Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T10:34:24.205Z Has data issue: false hasContentIssue false

Mechanism of Field Emission in Diamond and Diamond-Like Carbon

Published online by Cambridge University Press:  10 February 2011

J Robertson*
Affiliation:
Engineering Dept, Cambridge University, Cambridge CB2 IPZ, UK
Get access

Abstract

It is shown that the facile electron field emission from diamond and diamond-like carbon occurs because surface groups such as C-H can produce large changes in electron affinity, so that electric fields from the anode can be focused towards unhydrogenated surface areas of high affinity, the fields ending on negative charges in an underlying depletion layer. The resulting downwards band bending creates very large fields which cause Fowler-Nordheim emission, while not exceeding the breakdown field, which is the highest for any solid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Himpsel, F J, Knapp, J S, VanVechten, J A, Eastman, D E, Phys Rev B 20 624 (1979)Google Scholar
2. Geis, M W, et al. , IEEE Trans ED Let 12 456 (1991)Google Scholar
3. Zhu, W, Kochanski, G P, Jin, S, Seibles, L, J Appl Phys 78 2707 (1995)Google Scholar
4. Okano, K, Koizumi, S, Silva, S R P, Amnaratunga, G A J, Nature 381 140 (1996)Google Scholar
5. Geis, M W, Twichell, J C, Lyszczarz, T M, J Vac Sci Technol B 14 2060 (1996)Google Scholar
6. Talin, A A, Pan, L S, McCarty, K F, Doerr, H J, Bunshah, R F, Appl Phys Lett 69 3842 (1996)Google Scholar
7. Zhu, W, presented at Diamond Films '97 (Edinburgh, UK)Google Scholar
8. Amaratunga, G A J, Silva, S R P, App Phys Lett 68 2529 (1996)Google Scholar
9. Satyanarayana, B S, Hart, A, Milne, W I, Robertson, J, App Phys Lett 71 1430 (1997)Google Scholar
10. Coil, B F, Jaskie, J E, Markham, J L, Menu, E P, Talin, A A, vonAllmen, P, Mat Res Soc 498 xx (1998)Google Scholar
11. deHeer, W A, et al. , Science 270 1179 (1995); Adv Mats 9 87 (1997)Google Scholar
12. Wang, O H, Corrigan, T D, Dai, J Y, Krauss, A R, App Phys Lett 70 3308 (1997)Google Scholar
13. Obraztsov, A N, et al. , ISDED-2 (Osaka 1998)Google Scholar
14. Robertson, J, Mat Res Soc Symp Proc 498 xxx (1998)Google Scholar
15. Bandis, C, Pate, B B, App Phys Lett 69 366 (1996)Google Scholar
16. Groning, O, Kuttel, O, Groning, P, Schlapbach, L, App Phys Lett 71 2253 (1997)Google Scholar
17. Ristein, J, Schafer, J, Ley, L, Diamond Related Mats 4 508 (1995)Google Scholar
18. Schafer, J, Ristein, J, Ley, L, J Vac Sci Technol A 15 408 (1997)Google Scholar
19. Ristein, J, Ley, L, ISDED-2 (1998)Google Scholar
20. Rutter, M J, Robertson, J, Phys Rev B (April 15, 1998)Google Scholar
21. Modinos, A, Surf Sci 42 205 (1974)Google Scholar
22. Xu, W S, Tzeng, Y, Latham, R V, J Phys D 26 1776 (1993)Google Scholar
23. Huang, Z H, et al. , J Vac Sci Technol 13 522 (1995)Google Scholar
24. Pate, B, Chang, W Y, Bandis, C, Okano, K, ISDED-2 (Osaka 1998)Google Scholar
25. Collins, A T, Physica B 185 284 (1993)Google Scholar
26. Davis, R F, J Vac Sci Technol A 1 829 (1993)Google Scholar