Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:47:22.153Z Has data issue: false hasContentIssue false

Mechanisms of Plasma Oxidation of Si

Published online by Cambridge University Press:  21 February 2011

J. Siejka
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris VII, Tour 23, 2 Place Jussieu, 75251 Paris Cedex 05. - FRANCE
J. Perriere
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris VII, Tour 23, 2 Place Jussieu, 75251 Paris Cedex 05. - FRANCE
Get access

Abstract

Fundamental aspects of the interaction between non equilibrium, low pressure oxygen plasma and Si (silicides) are described. The kinetics of oxide growth in oxygen atmosphere, in plasma at low pressure (p<∼ 1 Torr) and low temperature (T < 1 800°C) regimes are reviewed and the Cabrera-Mott mechanism is postulated i.e. the oxidation process is controlled by ion injection at the plasma/oxide interface. The mechanism of electron injection and conduction during plasma anodization is reviewed and discussed in the frame of theory of high current injection in MIS structure. Enhancement of oxide growth rate due to the irradiation (laser), bombardment by electrons or ions is reviewed and compared to the plasma oxidation. Spectacular enhancement of the anodization rate of Si covered by a thin deposited layer of zirconia or hafnia oxide is analyzed. The anodization rate of Si deposit through ∼’ 0.5 mm YSZ single crystal substrate is evoked as an example of potentiality of plasma anodization process. The mechanism of movement of oxygen ions and of cations deduced from 160/180 experiments is discussed. A few examples of applications of Si plasma oxidation processes are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1- For example: Bell, A.T..”Techniques and Applications of Plasma Chemistry” (edited by Hollahan, J.R.), Wiley New York (1974).Google Scholar
2- Henry, D., Pauleau, Y. and Straboni, A. in “Réactivité dans les plasmas” p. 533565, Les Editions de Physique, 91 Les Ulis, France (1984).Google Scholar
3- Ho, V.Q. and Sugano, T. I.E.E.E. Trans. on Electron Devices ED 27 N° 8, 1436 (1980).Google Scholar
4- Miyake, K., Kimura, S., Warabisako, T., Sunami, H. and Tokuyama, R., J. Vac. Sci. Technol. A.2, 496 (1984).CrossRefGoogle Scholar
5- For example : Derrien, J. and Commandré, M., Surface Science, 118, 32 (1982).CrossRefGoogle Scholar
6- Fehlner, F.P. and Mott, N.F., Oxid. Met. 2, 59 (1970).CrossRefGoogle Scholar
7- WinterK, H.F., Coburn, J.W. and Chuang, T.J., J. Vac. Sci. Technol. B1, 469 (1983).Google Scholar
8- Cabrera, N. and Mott, N.F., Rep. Prog. Phys. 12, 163 (1948)Google Scholar
9- Fehlner, F.P., J. Electrochem. Soc. 131, 1647 (1984).CrossRefGoogle Scholar
10- Kamigaki, Y. and Itoh, Y. J. Appl. Phys. 48, 2891 (1977).Google Scholar
11- Ghez, R., J. Chem. Phys. 58, 1838 (1973).CrossRefGoogle Scholar
12- Kimura, S., Mur-akami, E., Miyake, K., Warabisako, T. and Sunami, H., Low temperature oxidation of silicon by microwave discharged oxygen plasma. Paper presented at the International Conference on Solid State Devices and Materials, August 1984, Kobe, Japan.Google Scholar
13- Ray, A.K. and Reisman, A., J. Electrochem. Soc. 128, 2424, 2460, 2466 (1981).Google Scholar
14- Ligenza, J.R., J. Appl. Phys. 36, 2703 (1965) - J. Musil, F. Za-ik, L. Bardos, G. Loncar and R. Dragila, J. Phys. D. 12, L61 (1979).Google Scholar
15- Orlowski, V.E. and Richter, H., Applied. Phys. Lett. 45, 241 (1984). - Berti, M., Drigo, A.V., lannitti, E., Bentini, G.G., Cohen, C. and Siejka, J., This Meeting (No B8.4).Google Scholar
16- Schaffer, S.A. and Lyon, S.A. J. Vac. Sci. Technol. 19, 494 (1981).Google Scholar
17- Ho, V.A. and Sugano, T., Jap. J. Appl. Phys. 19, 103 (1980). - A. Straboni, R. Villimoz and A. Vareille, Proceedings of 163rd Meeting of Electrochem. Soc. (Abstract : 867), San Francisco, May 1983.Google Scholar
18- Ando, K. and Matsumura, K., Thin Solid Films, 52, 173 (1978).CrossRefGoogle Scholar
19- Gourrier, S., Dim-Fitriou, P., Theeten, J.B., Perri~re, J., Siejka, J. and Croset, M., Appl. Phys. Lett. 38, 33 (1981). - R.P.H. Chang, J. Siejka, J. Perriére, M. Croset, Proceedings of the 3rd Symposium of Plasma Processing, The Electrochem. Soc., 82-6, 38 (1982).Google Scholar
20- Perribre, J., Siejka, J. and Chang, R.P.H., Thin Solid Films, 95, 309 (1982).Google Scholar
21- Rabinzohn, P., Thesis, Université Paris VI, Paris, FRANCE (1983).Google Scholar
22- Labunov, V., Parkhutik, V. and Tkharev, E., J. Cryst. Growth, 45, 399 (1978).CrossRefGoogle Scholar
23- Sze, S.M. in “Physics of Semiconductors Devices p. 493, Wiley-Interscience, 1969, New York, London, Sydney, Toronto.Google Scholar
24- Dimaria, D.J., in “The Physics of SiO2 and its Interfaces” p. 160, Ed. by Pantelides, S.T., Pergamon Press, New York 1978.CrossRefGoogle Scholar
25- Dimaria, D.J., in “The Physics of MOS insulators” p. 1, Eds. Lukorsky, G., Pantelides, S.T. and Galeener, F.L., Pergamon Press, New York, 1981.Google Scholar
26- Fromhold, A.T. Jr., J. Electrochem. Soc. 124, 538 (1974).Google Scholar
27- Friedel, P., Gourrie, S. and Dimitriou, P., J. Electrochem. Soc. 129, 18 (1981). - P. Friedel and S. GouigTer, J. Phys. Chem. Solids, 44, 353 (1983).Google Scholar
28- Kelly, R., Nucl. Instrument and Methods, 182/183, 351 (1981).Google Scholar
29- For example : Grunthaner, F.J., Lewis, B.F., Vasquez, R.P. and Maserjian, J. in “The Physics of MOS insulators” p. 290. Eds. Lukovsky, G., Pantelides, S.T. and Galeener, F.L., Pergamon Press, New York (1981).Google Scholar
30- Perriére, J., Siejka, J., Vilato, P., Laurent, A., Enard, J.P. and Heunier, R., Presented at ICTF-6 Meeting in Stockholm, August 1984 : abstract N' 038, to be published in J. Appl. Phys.Google Scholar
31- Meunier, R., Daban-Haurou, J.L., Salomé, M., Nuclear. Instruments and Methods, 186, 7 (1981).Google Scholar
32- Deal, B.E. and Grove, A.S., J. Appl. Phys., 36, 3770 (1965).Google Scholar
33- Straboni, A., Perriére, J., Siejka, J. and Croset, M., to be published.Google Scholar
34- Chang, R.P.H., Perri~re, J. and Siejka, J., to be published.Google Scholar
35- Croset, M., Schnell, J.P., Velasco, J.P. and Siejka, J., J. Appl. Phys., 48, 775 (1977).Google Scholar
36- Golecki, I., Manasevit, H.M., Moudy, L.A., Yang, J.J. and Mee, J.E., Appl. Phys. Lett., 42, 501 (1983). - D. Pribat, L.M. MerEandalli, M. Croset, D. Dieumegard and J. Siejk Material Letters, in press.CrossRefGoogle Scholar
37- Perriére, J., Siejka, J., Laurent, A., Croset, M., Dieumegard, D., Mercandalli, L.M. and Pribat, D., To be published in Appl. Phys. Letters.Google Scholar
38- Perriére, J., Siejka, J., Laurent, A., Enard, J.P. and d'Heurle, F., this Meeting, Abstract No F3.2.Google Scholar
39- Perriére, J., Siejka, J. and Chang, R.P.H., J. Appl. Phys. in press.Google Scholar
40- Yamasaki, K. and Sugano, T., J. Vac. Sci. Technol. 17, 959 (1980).Google Scholar
41- Rosencher, E., Strab-oii, A., Rigo, S. and Amsel, G., Appl. Phys. Lett.,34, 254 (1979).CrossRefGoogle Scholar
42- Fargeix, A. and -Ghibaudo, G., J. Appl. Phys. 56, 589 (1984).Google Scholar
43- Meunier, R., Perriére, J., Siejka, J. and Vilato, P., Presented at ICTF-6 Meeting in Stockholm, August 1984, Abstract N° to be published in J. Appl. Phys. 136,Google Scholar