Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T10:47:46.136Z Has data issue: false hasContentIssue false

Metal Film Nucleation and Growth on C60 Interfacial Layers

Published online by Cambridge University Press:  15 February 2011

A. F. Hebard
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NY 07974
C. -B. Eom
Affiliation:
Department of Materials Science and Mechanical Engineering, Duke University, Durham, NC 27708
R. C. Haddon
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NY 07974
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NY 07974
J. H. Marshall
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NY 07974
Get access

Abstract

The effect that the presence or absence of interfacial C60 layers has on the nucleation and subsequent growth of overlying thin metal films has been studied using in situ resistivity measurements. Comparisons are made for Al and Cu films grown on quartz and yttria stabilized zirconia (YSZ) substrates. Our results indicate that electron donation across M/C60 (M=Al, Cu) interfaces reduces the percolation threshold for conductivity while simultaneously giving rise to an increased resistance in the metal due to electron depletion. Additional physical processes that are taken into account include the effect of different interfacial energies at the M/C60 and M/substrate boundaries and the effect of substrate tunneling between percolating metallic islands during the initial stages of film growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Krätschmer, W., Lamb, L. D., Fostiropoulis, K., and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
[2] For reviews, see Hebard, A. F., Annu. Rev. Mater. Sci. 23, 159 (1993); J. Weaver and D. M. Poirier, Solid State Physics 48 (ed. by H. Ehrenreich and F. Spaepen, Academic Press, 1994) p. 1.Google Scholar
[3] Kuk, Y., Kim, D. K., Suh, Y. D., Park, K. H., Noh, H. P., Oh, S. J., and Kim, S. K., Phys. Rev. Lett. 70, 1948 (1993).Google Scholar
[4] Rowe, J. E., Rudolf, P., Tjeng, L. H., Malic, R. A., Meigs, G., and Chen, C. T., Int. J. Mod. Phys. B6, 3909 (1992).Google Scholar
[5] Ohno, T. R., Chen, Y., Harvey, S. E., Kroll, G. H., Weaver, J. H., Haufler, R. E., Smalley, R. E., Phys. Rev. B44, 13747 (1991).Google Scholar
[6] Chase, S. J., Bacsa, W. S., Mitch, M. G., Pilione, L. J., and Lannin, J. S., Phys. Rev. B46, 7873 (1992).Google Scholar
[7] Ohno, T. R., Chen, Y., Harvey, S. E., Kroll, G. H., Benning, P. J., Weaver, J. H., Chibante, L. P. F., Smalley, R. E., Phys. Rev. B47, 2389 (1993).Google Scholar
[8] Gensterblum, G., Yu, L. -M., Pireaux, J. -J., Thiry, P. A., Caudano, R., Themlin, J. -M., Bouzidi, S., Coletti, F., and Debever, J. -M., Appl. Phys. A56, 175 (1993).Google Scholar
[9] Hebard, A. F., Zhou, O., Zhong, Q., Fleming, R. M., Haddon, R. C., Thin Solid Films (in press).Google Scholar
[10] Hebard, A. F., Eom, C. B., Iwasa, Y., Lyons, K. B., Thomas, G. A., Rapkine, D. H., Fleming, R. M., Haddon, R. C., Phillips, Julia M., Marshall, J. H., Eick, R. H., Phys. Rev. B (in press).Google Scholar
[11] Zhao, W., Luo, K., Chen, J., Zhang, J., Li, C., Yin, D., Gu, Z., Zhou, X., Jin, Z., Sol. State Commun. 83, 853 (1992).Google Scholar