Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T14:45:20.410Z Has data issue: false hasContentIssue false

Metal-to-Ligand Charge Transfer Excited States in π-Conjugated Systems

Published online by Cambridge University Press:  21 March 2011

Yiting Li
Affiliation:
Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200
C. Ed Whittle
Affiliation:
Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200
Keith A. Walters
Affiliation:
Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200
Kevin D. Ley
Affiliation:
Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200
Kirk S. Schanze
Affiliation:
Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200
Get access

Abstract

This paper overviews recent work that examined the optical properties of mono-disperse, PPE-based π-conjugated oligomers that contain a 2,2-bipyridine-5,5'-diyl metal coordinating unit. The photophysical properties of the free oligomers and metallated oligomers that contain the -Ru(bpy)22+ and -Re(CO)3Cl transition metal complexes coordinated to the bpy-diyl unit have been characterized by absorption, photoluminescence and transient absorption spectroscopy. In addition, we report the photophysics of a novel organometallic “square” that features “sides” consisting of a PPE-type π-conjugated oligomer and “corners” that consist of (dbubpy)PtII(acetylide)2 units (where dbubpy = 4,4'-di-tert-butyl-2,2'-bipyridine).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Handbook of Conducting Polymers edited by Skotheim, T. A., Elsenbaumer, R. L., and Reynolds, J. R. (Marcel Dekker, New York, 1998).Google Scholar
2. Rothberg, L. J., Yan, M., Papadimitrakopoulos, F., Galvin, M. E., Kwock, E. W., and Miller, T. M., Synth. Met. 80, 41 (1996).Google Scholar
3. Scurlock, R. D., Wang, B., Ogilby, P. R., Sheats, J. R., and Clough, R. L., J. Am. Chem. Soc. 117, 10194 (1995).Google Scholar
4. Swager, T. M., Gil, C. J., and Wrighton, M. S., J. Phys. Chem. 99, 4886 (1995).Google Scholar
5. Walters, K. A., Ley, K. D., and Schanze, K. S., J. Chem. Soc. Chem. Commun. 10, 1115 (1998).Google Scholar
6. McGehee, M. D., Miller, E. K., Moses, D., and Heeger, A. J.. in Advances in Synthetic Metals. Twenty Years of Progress in Science and Technology edited by Bernier, P., Lefrant, S., Bidan, G. (Elsevier, Amsterdam, 1999) p. 98.Google Scholar
7. Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., and Zelewsky, A. von, Coord. Chem. Rev. 84, 85 (1988).Google Scholar
8. Wrighton, M., and Morse, D. L., J. Am. Chem. Soc. 96, 998 (1974).Google Scholar
9. Schanze, K. S., Neyhart, G. A., and Meyer, T. J., J. Phys. Chem. 90, 2182 (1986).Google Scholar
10. Watts, R. J., J. Chem. Ed. 60, 834 (1983).Google Scholar
11. Chen, P. Y., and Meyer, T. J., Chem. Rev. 98, 1439 (1998).Google Scholar
12. Ley, K. D., and Schanze, K. S., Coord. Chem. Rev. 171, 287 (1998).Google Scholar
13. Ley, K. D., Li, Y. T., Johnson, J. V., Powell, D. H., and Schanze, K. S., J. Chem. Soc. Chem. Commun. 1749 (1999).Google Scholar
14. Ziener, U., and Godt, A., J. Org. Chem. 62, 6137 (1997).Google Scholar
15. Kukula, H., Veit, S., and Godt, A., Eur. J. Org. Chem. 277 (1999).Google Scholar
16. Wang, B., and Wasielewski, M. R., J. Am. Chem. Soc. 119, 12 (1997).Google Scholar
17. Worl, L. A., Duesing, R., Chen, P., Ciana, L. Della, and Meyer, T. J., J. Chem. Soc. Dalton Trans. 3423 (1991).Google Scholar
18. Perkins, T. A., Humer, W., Netzel, T. L., and Schanze, K. S., J. Phys. Chem. 94, 2229 (1990).Google Scholar
19. Becker, R. S., Melo, J. S. de, Maçanita, A., and Elisei, F., J. Phys. Chem. 100, 18683 (1996).Google Scholar
20. Lucia, L. A., Burton, R. D., and Schanze, K. S., Inorg. Chim. Acta 208, 103 (1993).Google Scholar
21. Baba, A. I., Shaw, J. R., Simon, J. A., Thummel, R. P., and Schmehl, R. H., Coord. Chem. Rev. 171, 43 (1998).Google Scholar
22. Simon, J. A., Curry, S. L., Schmehl, R. H., Schatz, T. R., Piotrowiak, P., Jin, X., and Thummel, R. P., J. Am. Chem. Soc. 119, 11012 (1997).Google Scholar
23. Leininger, S., Olenyuk, B., and Stang, P. J., Chem. Rev. 100, 853 (2000).Google Scholar
24. Connick, W. B., Geiger, D., and Eisenberg, R., Inorg. Chem. 38, 3264 (1999).Google Scholar
25. Hissler, M., Connick, W. B., Geiger, D. K., McGarrah, J. E., Lipa, D., Lachiocotte, R. J., and Eisenberg, R., Inorg. Chem. 39, 447 (2000).Google Scholar