Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T02:56:52.397Z Has data issue: false hasContentIssue false

Microscopic Aspects Of Charge Transport In Hydrogenated Microcrystalline Silicon

Published online by Cambridge University Press:  17 March 2011

Antonín Fejfar
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague, Czech Republic
Tomáš Mates
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague, Czech Republic
Christian Koch
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague, Czech Republic
Bohuslav Rezek
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague, Czech Republic
Vladimír Švřek
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague, Czech Republic
Petr Fojtík
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague, Czech Republic
Ha Stuchlíková
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague, Czech Republic
Jiř́ Stuchlík
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague, Czech Republic
Jan Kočka
Affiliation:
Institute of Physical Elektronics, Stuttgart University, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

Charge transport in hydrogenated microcrystalline silicon (µc-Si:H) is determined by structure on several size scales: i) local atomic arrangement (<1 nm), ii) crystalline grains and their boundaries (1-10 nm), iii) grain aggregates or columns (0.1-1 µm) and finally iv) features comparable to layer thickness (0.1-10 µm). We first summarize our experimental results concerning these effects: differences of conductivities of grains and amorphous tissue measured locally by conductive AFM, transport anisotropy observed by comparing dark conductivity and ambipolar diffusion length parallel and perpendicular to the substrate, and finally thickness dependence of transport parameters (e.g. dark conductivity activation energy and prefactor). Most of these phenomena can be described by using a novel model of the µc-Si:H growth leading to a structure known as Voronoi adjacency network. The model is based on the nearest neighbor constrained growth. To our knowledge, the Voronoi structure is the first structural model able to predict structure and transport properties of the µc-Si:H and it may become a basis for the future predictive model of µc-Si:H based solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kočka, J., Fejfar, A., Vorlíček, V., Stuchlíková, H., and Stuchlík, J., in Amorphous and Heterogeneous Silicon Thin Films: Fundamentals to Devices - 1999, edited by Branz, H.M., Collins, R.W., Okamoto, H., Guha, S., and Schropp, R. (Mater. Res. Soc. Proc. 557, Materials Research Society, Warrendale 1999), pp. 483494.Google Scholar
2. Kočka, J., Stuchlíková, H., Stuchlík, J., Rezek, B., Švrček, V., Fojtík, P., Pelant, I., and Fejfar, A., in Polycrystalline Semiconductors VI - Bulk Materials, Thin Films and Devices, edited by Bonnaud, O., Mohammed-Brahim, T., Strunk, H.P., and Werner, J.H., Solid State Phenomena Series (Scitech Publ., Uettikon am See, Switzerland, 2001), in press.Google Scholar
3. Rezek, B., Stuchlík, J., Fejfar, A., and Kočka, J.: Appl. Phys. Lett. 74, 1475 (1999).Google Scholar
4. Fejfar, A., Rezek, B., Knápek, P., Stuchlík, J., and Kočka, J., J. Non-Crystalline Solids 266–269, 309 (2000).Google Scholar
5. Švrček, V., Pelant, I., Kočka, J., Fojtík, P., Rezek, B., Stuchlíková, H., Fejfar, A., Stuchlík, J., Poruba, A., and Toušek, J., J. Appl. Phys. 89, 1800 (2001).Google Scholar
6. Poruba, A., Fejfar, A., Remeš, Z., Špringer, J., Van[notdef]ček, M., Kočka, J., Meier, J., Torres, P., and Shah, A., J. Appl. Phys. 88, 148 (2000).10.1063/1.373635Google Scholar
7. Okabe, A., Boots, B., and Sugihara, K., Spatial Tessellations: Concepts and Applications of Voronoi diagrams, J. Wiley & Sons, New York, 2000.Google Scholar
8. Fujiwara, H., Kondo, M., Matsuda, A., Phys. Rev. B63, 115306 (2001).Google Scholar
9. Berg, M. de, Kreveld, M. van, Overmars, M., and Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, Springer Verlag, Berlin, 2000.Google Scholar
10. Guibas, L., and Stolfi, J., ACM Transactions on Graphics, 4, 74 (1985).Google Scholar
11. Yoshida, K., Philosophical Magazine B53, 55 (1986).Google Scholar
12. Nagaya, T., and Ishibashi, Y., Jpn. J. Appl. Phys. 37, 157 (1998).Google Scholar
13. Finger, F., Müller, J., Malter, C., Carius, R., Wagner, H., J. Non-Crystalline Solids 266-269, 511 (2000).Google Scholar