Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T19:52:19.975Z Has data issue: false hasContentIssue false

Microscopic Study of Metal Hydrides using Electron Spin resonance

Published online by Cambridge University Press:  15 February 2011

E. L. Venturini*
Affiliation:
Sandia National Laboratories*, Albuquerque, NM 87185
Get access

Abstract

Electron spin resonance (ESR) of dilute paramagnetic ions in nonmagnetic metallic hydrides provides microscopic information about the hydrogen ions in the immediate vicinity of the impurity. By comparing ESR spectra for different host metals and several hydrogen/metal ratios, one can determine material properties including host lattice symmetry, phase boundaries and occupation of available sites by hydrogen. Examples are presented of ESR of dilute Er in group IIIB and IVB metal hydrides, demonstrating the sensitivity and versatility of ESR as a spectroscopic technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

A U. S. Department of Energy facility.

This work sponsored by the U. S. Department of Energy under Contract No. DE–AC04–76–DP00789.

References

REFERENCES

1. Cotts, R. M. in: Hydrogen in Metals I, Basic Properties, Alefeld, G. and Völkl, J. eds. (Springer–Verlag, Berlin, 1978) Ch. 9.Google Scholar
2. Wagner, F. E. and Wörtmann, G. in: Hydrogen in Metals I, Basic Properties, Alefeld, G. and Völkl, J. eds. (Springer–Verlag, Berlin, 1978), Ch. 6.Google Scholar
3. Springer, T. in: Hydrogen in Metals I, Basic Properties, Alefeld, G. and Völkl, J. eds. (Springer–Verlag, Berlin, 1978), Ch. 4;Google Scholar
Sköld, K. in: Hydrogen in Metals I, Basic Properties, Alefeld, G. and Völkl, J. eds. (Springer–Verlag, Berlin, 1978), Ch. 10.Google Scholar
4. Weaver, J. H. et al. , Phys. Rev. B19, 4855 (1979).CrossRefGoogle Scholar
5. Beck, R. L. and Mueller, W. M. in: Metal Hydrides, Mueller, W. M., Blackledge, J. P. and Libowitz, G. G. eds. (Academic Press, New York, 1968) Ch. 7.Google Scholar
6. Mueller, W. M. in: Hydrogen in Metals I, Basic Properties, Alefeld, G. and Völkl, J. eds. (Springer–Verlag, Berlin, 1978), Chs. 8 and 9.Google Scholar
7. Blackledge, J. P. in: Hydrogen in Metals I, Basic Properties, Alefeld, G. and Völkl, J. eds. (Springer–Verlag, Berlin, 1978), Ch. 10.Google Scholar
8. Lea, K. R. et al. , J. Phys. Chem. Solids 23, 1381 (1962).Google Scholar
9. Shenoy, G. K. et al. , J. Physique 40, Suppl. C–2, 180 (1979).Google Scholar
10. Suits, B. et al. , J. Magn. Magn. Mater. 5, 344 (1977).CrossRefGoogle Scholar
11. Venturini, E. L., J. Appl. Phys. 50, 2053 (1979).CrossRefGoogle Scholar
12. Venturini, E. L. and Richards, P. M., Solid State Commun. 32, 1185 (1979).CrossRefGoogle Scholar
13. Venturini, E. L. and Richards, P. M., Phys. Lett. 76A, 344 (1980).CrossRefGoogle Scholar
14. Venturini, E. L., J. Less–Common Met. 74 45 (1980).CrossRefGoogle Scholar
15. Anderson, D. L. et al. , Phys. Rev. B21, 2625 (1980).CrossRefGoogle Scholar
16. Yannopoulos, L. N. et al. , J. Phys. Chem. 69, 2510 (1965).CrossRefGoogle Scholar
17. Korringa, J., Physica 16, 601 (1950).CrossRefGoogle Scholar