No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
The microstructure of Y-Ba-Cu-O compound, sintered at 950°C for 16h, was examined by using transmission electron microscope(TEM). For the furnace cooling sample, two variants of–orthorhombic YBa2-Cu3O7−x (O-Y123) twins, grown on (110) and (110) planes, respectively, are crystallographically related to the matrix and produce a Widmanstatten morphology. The orientation relationship between the lath twin and the matrix is (001)T//(001) and [100]T//[010]M. The O-Y123 compound is unstable under tne electron irradition. Twin boundaries are identified as S-boundaries. The minor phases as Y2BaCuO5 (Y211) and BaCuO2 were also observed. For the air cooling sample, no superconductivity above 77K was found. The major phase is tetragonal Y123 (T-Y123), while small amount of 0-Y123 is also existent.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.