Article contents
Microstructural, Optical and Electrical Properties Of Post-Annealed ZnO:Al Thin Films
Published online by Cambridge University Press: 14 February 2012
Abstract
Aluminum-doped zinc oxide (ZnO:Al) thin films were prepared on glass substrates by radio frequency (RF) magnetron sputtering from a ceramic mixed target ZnO:Al2O3 (1 wt.%) with a power of 250 W. Two series of samples were deposited at room temperature, the first one in pure Ar atmosphere, the second one in Ar/O2 gas mixture. Effects of post-deposition annealing treatments carried out from 400 °C to 500 °C under vacuum and in N2/H2 (5%) atmosphere have been investigated. The influence of these parameters was studied by a detailed microstructural analysis using X-Ray diffraction and Raman spectroscopy. For N2/H2 annealing process, the increase of charge carrier concentration limits the increase of the mobility while after vacuum annealing, an improvement of both electrical and optical properties was observed. The increase of the crystallinity and grain size for ZnO:Al films deposited in Ar/O2 gas mixture could explain their improvements. Resistivity was reduced down to 3.5×10-4 Ω.cm, for a mobility of 49 cm2/V.s with a vacuum annealing at 450 °C for ZnO:Al deposited in Ar/O2 gas mixture.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1394: Symposium M – Oxide Semiconductors–Defects, Growth and Device Fabrication , 2012 , mrsf11-1394-m13-18
- Copyright
- Copyright © Materials Research Society 2012
References
REFERENCES
- 1
- Cited by