Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T20:30:27.319Z Has data issue: false hasContentIssue false

Microstructure of InGaN Quantum Wells

Published online by Cambridge University Press:  10 February 2011

F. A. Ponce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, ponce@parc.xerox.com
D. Cherns
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, U. K.
W. Goetz
Affiliation:
Hewlett-Packard Company, Optoelectronics Division, 370 W.Trimble Rd., San Jose, CA 95131
R. S. Kern
Affiliation:
Hewlett-Packard Company, Optoelectronics Division, 370 W.Trimble Rd., San Jose, CA 95131
Get access

Abstract

The microstructure of lnxGal-xN quantum wells with intermediate indium concentrations (x = 0.28 and 0.52) has been studied using transmission electron microscopy. High-resolution lattice images and dark-field images taken under high tilt conditions indicate that the quantum wells are inhomogeneous in character. Most of the area of the quantum wells is pseudomorphic with the GaN adjacent layer. However, misfit dislocations are sometimes observed, although with an inhomogeneous distribution. Strained cluster regions are observed in the high-indium concentration quantum wells, with dimensions ranging fi'om 3 to 10 nm in diameter. Evidence is presented suggesting the extent of clustering depends on the exact orientation of the growth surface which is related to the columnar nature of the GaN/sapphire epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, e.g., Ponce, F. A. and Bour, D. B., Nature 386, 351, (1997).Google Scholar
2. Nakamura, S. and Mukai, T., Jpn. J. Appl. Phys. 31, L1457 (1992).Google Scholar
3. Ho, I-hsiu and Stringfellow, G. B., Appl. Phys. Lett. 69, 2701 (1996).Google Scholar
4. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
5. Narukawa, Y., Kawakami, Y., Fujita, S., Fujita, S., and Nakamura, S., Phys. Rev. B 55, R1938 (1997).Google Scholar
6. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Fujita, S., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
7. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 70, 2753 (1997).Google Scholar
8. Hirsch, P., Howie, A., Nicholson, R. B., Pashley, D. W., Whelan, M. J., Electron Microscopy of Thin Crystals (Krieger, New York 1965), Chap. 7.Google Scholar
9. Frank, F. C. and van der Merwe, J. W., Proc. Roy. Soc. London, Ser. A 198, 205 (1949).Google Scholar