Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T02:42:41.391Z Has data issue: false hasContentIssue false

Modeling Growth Directional Features of Silicon Nanowires Obtained Using SiO

Published online by Cambridge University Press:  01 February 2011

T. Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300;
S. T. Lee
Affiliation:
Center Of Super-Diamond and Advanced Films (COSDAF) & Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China;
U. Gösele
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, D06120 Halle, Germany.
Get access

Abstract

Silicon nanowires (SiNW) grown using Si monoxide source materials are mainly oriented in the <112> direction, and some in the <110> direction. These directional features may be understood by postulating that growth of the SiNW is governed by lateral advancement of {111} plane layers that are stepped, and the role of particular kinds of dislocations providing perpetuate steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964)Google Scholar
2. Givargizov, E. I., J. Cryst. Growth 32, 20 (1975)Google Scholar
3. Westwater, J., Gosain, D. P., Tomiya, S., and Usui, S., J. Vac. Sic. Technol. B 15, 554 (1997)Google Scholar
4. Morales, A. M. and Lieber, C. M., Science 279, 208 (1998)Google Scholar
5. Kamins, T. I., Williams, R. S., Chen, Y., Chang, Y.-L., and Chang, Y. A., Appl. Phys. Lett. 76, 562 (2000)Google Scholar
6. Zhang, X.-Y., Zhang, L.-D., Meng, G.-W., Li, G.-H., Jin-Phillips, N.-Y., and Phillips, F., Adv. Mater. 13, 1238 (2001)Google Scholar
7. Hasunuma, R., Komeda, T., Mukaida, H., and Tokumoto, H., J. Vac. Sci. Technol. B15, 1437 (1997).Google Scholar
8. Wang, N., Tang, Y. H., Zhang, Y. F., Yu, D. P., Lee, C. S., Bello, I., and Lee, S. T., Chem. Phys. Lett. 283, 368 (1998)Google Scholar
9. Zhang, Y. F., Tang, Y. H., Wang, N., Yu, D. P., Lee, C. S., Bello, I., and Lee, S. T., Appl. Phys. Lett. 72, 1835 (1998)Google Scholar
10. Yu, D. P., Bai, Z. G., Ding, Y., Hang, Q. L., Zhang, H. Z., Wang, J. J., Zou, Y. H., Qian, W., Xiong, G. C., Zhou, H. T., and Feng, S. Q., Appl. Phys. Lett. 72, 3458 (1998)Google Scholar
11. Wang, N., Zhang, Y. F., Tang, Y. H., Lee, C. S., and Lee, S. T., Appl. Phys. Lett. 73, 3902 (1998)Google Scholar
12. Zhang, Y. F., Tang, Y. H., Wang, N., Lee, C. S., and Lee, S. T., J. Cryst. Growth 197, 136 (1999)Google Scholar
13. Peng, H. Y., Wang, N., Shi, W. S., Zhang, Y. F., Lee, C. S., and Lee, S. T., J. Appl. Phys. 89, 727 (2001)Google Scholar
14. Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906 (1978)Google Scholar
15. Burton, W. K., Cabrera, N., and Frank, F. C., Nature 163, 398 (1949)Google Scholar
16.For overview and references, see Cottrell, A. H., Dislocations and Plastic Flow in Crystals (Oxford University Press, London, 1963), Chapter 3; F. R. N. Nabarro, Theory of Crystal Dislocations (Oxford University Press, London, 1967), Chapter 5.Google Scholar
17. Hornstra, J., J. Phys. Chem. Solids 5, 129 (1955)Google Scholar