No CrossRef data available.
Article contents
Modeling of Grain Structure Evolution and its Impact on the Reliability of Al(Cu) Thin Film Interconnects
Published online by Cambridge University Press: 10 February 2011
Abstract
We have extended a 2D simulation of grain growth to treat the effects of precipitates on the evolution of interconnect grain structures during post-patterning processing. It is known from experiments that different annealing histories result in different precipitate sizes and locations. Precipitates capture and effectively pin grain boundaries and inhibit grain growth and evolution toward bamboo structures. We find that even a small volume fraction of precipitates prevent an interconnect strip from reaching the fully bamboo structure by retarding grain growth and lowering the average grain size. At a late stage of evolution, cluster regions are pinned by precipitates on both sides, preventing further transformation to the by far more reliable bamboo structure. The results from grain growth simulations have been used with our electromigration simulator MTT/EmSim to investigate the dependence of interconnect reliability on linewidth and precipitate distribution. We find that in lines with precipitates the bamboo structure is not reached during post-pattern annealing even if the line width is smaller than the average grain diameter. Furthermore, it is found that while Cu in solid solution improves interconnect reliability, Al2Cu precipitates can inhibit post-patterning grain structure evolution to more reliable bamboo or near-bamboo structures so much that similar lines made of pure Al would be more reliable. Linked grain structure evolution and electromigration simulations allow process optimization for maximum interconnect reliability.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998