Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-21T20:21:37.007Z Has data issue: false hasContentIssue false

Modeling Valence-Band Images from Synchrotron-Radiation Studies Using Display Analyzers: Lithium Fluoride and Graphite

Published online by Cambridge University Press:  15 February 2011

John E. Klepeis
Affiliation:
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
F. J. Himpsel
Affiliation:
I. B. M. Research Division, Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

We present simulated photoelectron angular distributions (PAD's) for LiF and graphite. The results describe electron photocurrent versus photon energy, electron initial-state energy, and emission angles (leading to identification of two, or three, components of a valence electron's initial crystal momentum). Results are displayed in a fashion greatly facilitated by display analyzers. Earlier experimental results for LiF are confirmed in great detail. We discuss statistical comparison of theoretical and experimental PAD's. Effects of Bragg- diffraction on outgoing photoelectrons and uncertainty in crystal momentum normal to a surface are analyzed. In graphite, the observed lowering of symmetry, from that in a periodic-zone band structure to that seen in the PAD's, is modeled and explained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] For a review, see Himpsel, F. J., Advances in Physics 32, 1 (1983).Google Scholar
[2] Aebi, P., Osterwalder, J., Fasel, R., Naumović, D., and Schlapbach, L., Surface Science 309, 917 (1994), and references therein.Google Scholar
[3] Eastman, D. E., Donelon, J. J., Hien, N. C., and Himpsel, F. J., Nucl. Inst. and Methods 172, 327 (1980).Google Scholar
[4] Santoni, A., Terminello, L. J., Himpsel, F. J., and Takahashi, T., Appl. Phys. A 52, 299 (1991).Google Scholar
[5] Shirley, E. L., Terminello, L. J., Santoni, A., and Himpsel, F. J., unpublished.Google Scholar
[6] Himpsel, F. J., Terminello, L. J., Lapiano-Smith, D. A., Eklund, E. A., and Barton, J. J., Phys. Rev. Lett. 68, 3611 (1992).Google Scholar
[7] Kittel, C., Introduction to Solid State Physics, 6th. Edition, p. 222, (John Wiley and Sons, New York, 1986).Google Scholar
[8] Shirley, E. L., Terminello, L. J., Klepeis, J. E., and Himpsel, F. J., unpublished.Google Scholar
[9] Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498 (1954).Google Scholar
[10] Zhu, X. and Louie, S. G., unpublished.Google Scholar
[11] Hybertsen, M. S. and Louie, S. G., Phys. Rev. Lett. 55, 1418 (1985); Phys. Rev. B 34, 5390 (1986).Google Scholar
[12] We do not necessarily limit k to the first Brillouin zone, but associate it with a photoelectron's total momentum. The description of an initial state depends only on k modulo reciprocal-lattice vectors.Google Scholar
[13] McFeely, F. R., Stöhr, J., Apai, G., Wehner, P. S., and Shirley, D. A., Phys. Rev. B 14, 3273 (1976); J. W. Gadzuk, Phys. Rev. B 10, 5030 (1974).Google Scholar