Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T21:32:24.911Z Has data issue: false hasContentIssue false

Modulation Doped GaAs with Electron Mobilities Exceeding 107cm2/V sec

Published online by Cambridge University Press:  28 February 2011

Loren Pfeiffer
Affiliation:
AT&T Bell Laboratories, Inc. Murray Hill, N.J. 07974
K. W. West
Affiliation:
AT&T Bell Laboratories, Inc. Murray Hill, N.J. 07974
H. L. Stormer
Affiliation:
AT&T Bell Laboratories, Inc. Murray Hill, N.J. 07974
K. W. Baldwin
Affiliation:
AT&T Bell Laboratories, Inc. Murray Hill, N.J. 07974
Get access

Abstract

A modulation doped Al.35Ga.65As/GaAs single interface structure using Si delta doping setback from the two dimensional electron gas (2 DEG) by 700Å, was measured in van der Pauw geometry at 0.35K and showed an electron mobility of 1.17× 107 cm2 /V see at a carrier density of 2.2× 1011electrons/cm2. An Al.30Ga.70As/GaAs single quantum-well 250Å wide of similar structure with a 500Å setback yielded a 2 DEG mobility of 5.1× 106 cm2 /Vsec at 3.0×1011 electrons/cm2under similar measurement conditions. These mobilities exceed those previously published by more than a factor of two for the single interface structure, and by nearly an order of magnitude for the quantum-well. The samples were grown by solid source MBE in a Varian Gen II modified with He closed-cycle cryogenic vacuum pumping, and in other ways, to achieve a base pressure of 1.5× 10−12 torr, as measured on a extractor-type ionization gauge that is not subject to the usual x-ray limited reading.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stormer, H. L., Dingle, R., Gossard, A. C. and Wiegmann, W., Inst. Conf. Ser. 43, 557 (1978) London.Google Scholar
2. English, J. H., Gossard, A. C., Stormer, H. L. and Baldwin, K. W., Appl. Phys. Letts. 50, 1826 (1987).Google Scholar
3. Shayegan, M., Goldman, V. J., Jiang, C., Sajoto, T. and Santos, M., Appl. Phys. Letts. 52, 1086 (1088).Google Scholar
4.See for example: Narayanamurti, V., Science 235, 1023 (1987).CrossRefGoogle Scholar
5.Varian Associates, Inc., Santa Clara, California 95054.Google Scholar
6.See for example: A Users Guide to Vacuum Technology, by John O'Hanlon, F. p. 366–7, Wiley-Interscience (1980).Google Scholar
7.CTI-Cryogenics, Waltham, Mass 02254.Google Scholar
8. Pfeiffer, L. N. and West, K. W., U.S. Patent Application +276082, Allowed on May 23, 1989.Google Scholar
9.Inficon Leybold-Heraeus, Inc., East Syracuse, New York 13057.Google Scholar
10. Redhead, P. A., J. Vac. Sci. Techn. 8, 173 (1966).CrossRefGoogle Scholar
11.Furakawa Co, Ltd., Tokyo, Japan.Google Scholar
12.Vacuum Metallurgical Co., Ltd., Tokyo, Japan.Google Scholar
13.Alcan Electronic Materials, Scottsdale, Arizona 85260.Google Scholar
14. Shiraki, Y., Mishima, T., and Morioka, M., J. Cryst. Growth 81, 164–8 (1987).CrossRefGoogle Scholar
15. Etienne, B. and Paris, E., J. Physique 48, 2047–52 (1987).CrossRefGoogle Scholar
16. Eisenstein, J. P., Stormer, H. L., Pfeiffer, L. and West, K. W., Phys. Rev. Letts. 62, 1540 (1989).CrossRefGoogle Scholar
17. Walukiewicz, W., Ruda, H. E., Lagowski, J. and Gatos, H. C., Phys. Rev. B30, 4571–82 (1984).Google Scholar
18. Harris, J. J., Foxen, C. T., Lacklison, D. E., and Barnham, K. W. J., Superlattices and Microstructures 2, 563 (1986).Google Scholar
19. Price, P. J., Surf. Sci. 143, 145 (1984).Google Scholar
20. Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M., and Matsusue, T., Appl. Phys. Letts. 51, 1934 (1987).Google Scholar