Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T18:02:42.010Z Has data issue: false hasContentIssue false

Molecular Motor-Based Assays for Altered Nanomechanical Function of Ca2+-Regulatory Proteins in Cardiomyopathies

Published online by Cambridge University Press:  01 February 2011

P. Bryant Chase
Affiliation:
chase@bio.fsu.edu, Florida State University, Biological Science, Room 222 BIO, 81 Chieftan Way, PO Box 3064370, Tallahassee, FL, 32306-4370, United States, 850-644-0056, 850-644-0481
Nicolas M. Brunet
Affiliation:
brunet@u.washington.edu, Florida State University, Biological Science and Molecular Biophysics, Tallahassee, FL, 32306, United States
Goran Mihajlovic
Affiliation:
mihajlovic@anl.gov, Florida State University, Physics and MARTECH, Tallahassee, FL, 32306, United States
Peng Xiong
Affiliation:
xiong@martech.fsu.edu, Florida State University, Physics and MARTECH, Tallahassee, FL, 32306, United States
Stephan von Molnár
Affiliation:
molnar@martech.fsu.edu, Florida State University, Physics and MARTECH, Tallahassee, FL, 32306, United States
Get access

Abstract

We propose that a thermo-electrical control system for rapid and reversible actuation of biomolecular motors and their partner filaments can also be used to study molecular mechanisms of cardiovascular diseases. We have previously used this device to evaluate the temperature-dependence of unregulated (absence of cardiac Ca2+-regulatory proteins tropomyosin, α-Tm, and troponin, Tn) actin filament sliding powered by myosin motors, which hydrolyze ATP. These assays using the thermo-electric controller can also be applied to regulated thin filaments (F actin plus α-Tm and Tn) to obtain energetic parameters and functional correlates of structural stability at the level of single filaments. This allows us not only to examine Ca2+-dependent sliding of thin filaments, but also to test for altered function of clinically relevant mutations of cardiac myofilament proteins such as those identified in familial hypertrophic cardiomyopathy (FHC).

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hess, H., Science 312, 860 (2006).Google Scholar
2. Byun, K.-E., Kim, M.-G., Chase, P.B. and Hong, S., Langmuir 23, 9535 (2007).Google Scholar
3. Manandhar, P., Huang, L., Grubich, J.R., Hutchinson, J.W., Chase, P.B. and Hong, S., Langmuir 21, 3213 (2005).Google Scholar
4. Jaber, J.A., Chase, P.B. and Schlenoff, J.B., Nano Letters 3, 1505 (2003).Google Scholar
5. Sundberg, M., Bunk, R., Albet-Torres, N., Kvennefors, A., Persson, F., Montelius, L., Nicholls, I.A., Ghatnekar-Nilsson, S., Omling, P., Tagerud, S., et al., Langmuir 22, 7286 (2006).Google Scholar
6. Huang, L., Manandhar, P., Byun, K.-E., Chase, P.B. and Hong, S., Langmuir 22, 8635 (2006).Google Scholar
7. Mihajloviæ, G., Brunet, N.M., Trboviæ, J., Xiong, P., Molnár, S. von and Chase, P.B., Appl. Phys. Lett. 85, 1060 (2004).Google Scholar
8. Grove, T.J., Puckett, K.A., Brunet, N.M., Mihajloviæ, G., McFadden, L.A., Xiong, P., Molnćr, S. von, Moerland, T.S. and Chase, P.B., IEEE Trans. Adv. Packag. 28, 556 (2005).Google Scholar
9. Schoffstall, B., Clark, A. and Chase, P.B., Biophys. J. 91, 2216 (2006).Google Scholar
10. Regnier, M., Rivera, A.J., Chen, Y. and Chase, P.B., Circ. Res. 86, 1211 (2000).Google Scholar
11. Schoffstall, B. and Chase, P.B., J Cell Biochem In press (2008).Google Scholar
12. Gordon, A.M., LaMadrid, M., Chen, Y., Luo, Z. and Chase, P.B., Biophys. J. 72, 1295 (1997).Google Scholar
13. Schoffstall, B., Brunet, N.M., Wang, F., Williams, S., Barnes, A.T., Miller, V.F., Compton, L.A., McFadden, L.A., Taylor, D.W., Dhanarajan, R., et al., Physiol, J.. 577, 935 (2006).Google Scholar
14. Köhler, J., Chen, Y., Brenner, B., Gordon, A.M., Kraft, T., Martyn, D.A., Regnier, M., Rivera, A.J., Wang, C.-K. and Chase, P.B., Physiol. Genomics 14, 117 (2003).Google Scholar
15. Gafurov, B., Fredricksen, S., Cai, A., Brenner, B., Chase, P.B. and Chalovich, J.M., Biochemistry 43, 15276 (2004).Google Scholar
16. Kataoka, A., Hemmer, C. and Chase, P.B., J. Biomech. 40, 2044 (2007).Google Scholar
17. Parmacek, M.S. and Solaro, R.J., Prog Cardiovasc Dis 47, 159 (2004).Google Scholar
18. Keren, A., Syrris, P. and McKenna, W.J., Nat Clin Pract Cardiovasc Med 5, 158 (2008).Google Scholar
19. Ahmad, F., Seidman, J.G. and Seidman, C.E., Annu. Rev. Genomics Hum. Genet. 6, 185 (2005).Google Scholar
20. Alcalai, R., Seidman, J.G. and Seidman, C.E., J Cardiovasc Electrophysiol 19, 104 (2008).Google Scholar
21. Gordon, A.M., Chen, Y., Liang, B., LaMadrid, M., Luo, Z. and Chase, P.B., Adv. Exp. Med. Biol. 453, 187 (1998).Google Scholar
22. Kremneva, E., Boussouf, S., Nikolaeva, O., Maytum, R., Geeves, M.A. and Levitsky, D.I., Biophys. J. 87, 3922 (2004).Google Scholar