Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T18:15:33.648Z Has data issue: false hasContentIssue false

Morphology of the Fungus Aspergillus Oryzae and Nidulans

Published online by Cambridge University Press:  10 February 2011

Sasuke Miyazima
Affiliation:
Department of Engineering Physics, Chubu University, Kasugai, Aichi 487 Japan, miyazima@isc.chubu.ac.jp
Shu Matsuura
Affiliation:
School of High-Technology for Human Welfare, Tokai University, Numazu, Shizuoka 410-03, Japan
Get access

Abstract

A variety of growth manner of the fungus Aspergillus oryzae and nidulans under varying environmental conditions such as the nutrient concentration, and medium stiffness are investigated, ranging from a homogeneous Eden-like to a ramified DLA-like pattern. The roughness σ(i, h) of the growth front of the band-shaped colony, where h is the mean front height within l of the l horizontal range, satisfies the self-affine fractal relation under favorable environmental conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mandelbrot, B. B., Nature of Fractal of Geometry (Freeman, San Francisco, 1982).Google Scholar
2. Witten, T. A. and Sander, L. M., Phys. Rev. Lett. 47,1400 (1981).Google Scholar
3. Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H. and Sawada, Y., Phys. Rev. Lett. 53, 286 (1984).Google Scholar
4. Family, F. and Landau, D. P., Kinetics of Aggregation and Gelation (North-Holland, Amsterdam, 1984).Google Scholar
5. Stanley, H. E. and Ostrowski, N., On Growth and Form (Martinus Nijhoff Dordrecht, 1986).Google Scholar
6. Feder, J., Fractals (Plenum Press, New York, 1988).Google Scholar
7. Vicsek, T., Fractal Growth Phenomena (World Scientific, Singapore, 1989).Google Scholar
8. Meakin, P., in Phase Transitions and Critical Phenomena, Vol.12, eds. Domb, C. and Lebovitz, L. (Academic Press, New York, 1990).Google Scholar
9. Turkevich, L. A. and Scher, H., Phys. Rev. Lett. 53, 1026 (1985)Google Scholar
10. Ball, R. C., Brady, R. M., Rossi, G. and Thompson, B., Phys. Rev. Lett. 55, 1406 (1985).Google Scholar
11. Honda, K., Toyoki, H. and Matsushita, M., J. Phys. Soc. Jpn. 55, 707 (1986).Google Scholar
12. Meakin, P., Phys. Rev. Lett. 51, 1119 (1983).Google Scholar
13. Kolb, M., Botet, R. and Jullien, R., Phys. Rev. Lett. 51, 1123 (1983).Google Scholar
14. Vold, M. J., J Colloid Interface Sci. 18, 684 (1963).Google Scholar
15. Charlaix, E., Guyon, E. and River, N., Geol. Mag. 122, 157 (1985).Google Scholar
16. Family, F., Masters, B. R. and Platt, D. F., Physica D38, 98 (1989).Google Scholar
17. Fujikawa, H. and Matsushita, M., J. Phys. Soc. Jpn 58, L3875 (1989).Google Scholar
18. Vicsek, T., Cserzo, M. and Horvath, V. K., Physica A167, 315 (1990).Google Scholar
19. Matsuura, S. and Miyazima, S., in “Formation, Dynamics and Statistics of Patterns” eds Kawasaki, K. and Suzuki, M., (World Scientific, Singapore, 1993).Google Scholar
20. Obert, M., Pfeifer, P. and Sernetz, M., J. Baqteriology 172, 1180 (1990).Google Scholar
21. Eden, M., Proc. 4-th Berkeley Symp. on Math. Statistics and Probability, Vol.4, ed. Neyman, F. (University of California Press, Berkeley, 1961).Google Scholar
22. Kardar, M., Parisi, G. and , Y, Zhang, Phys. Rev. Lett. 56, 889 (1986).Google Scholar