Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:36:51.793Z Has data issue: false hasContentIssue false

Morphology-driven electrical and optical properties in graded hierarchical transparent conducting Al:ZnO

Published online by Cambridge University Press:  01 May 2014

P. Gondoni
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces, Politecnico di Milano - Via Ponzio 34/3, 20133 Milano, Italy
P. Mazzolini
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces, Politecnico di Milano - Via Ponzio 34/3, 20133 Milano, Italy Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia Via Pascoli 70/3, 20133 Milano, Italy
A. M. Pillado Pérez
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces, Politecnico di Milano - Via Ponzio 34/3, 20133 Milano, Italy
V. Russo
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces, Politecnico di Milano - Via Ponzio 34/3, 20133 Milano, Italy
A. Li Bassi
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces, Politecnico di Milano - Via Ponzio 34/3, 20133 Milano, Italy Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia Via Pascoli 70/3, 20133 Milano, Italy
C. S. Casari
Affiliation:
Dipartimento di Energia and NEMAS – Center for NanoEngineered Materials and Surfaces, Politecnico di Milano - Via Ponzio 34/3, 20133 Milano, Italy Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia Via Pascoli 70/3, 20133 Milano, Italy
Get access

Abstract

Graded Al-doped ZnO layers, constituted by a mesoporous forest-like system evolving into a compact transparent conductor, were synthesized by Pulsed Laser Deposition with different morphologies to study the correlation with functional properties. Morphology was monitored by Scanning Electron Microscopy images and by measuring the resulting surface roughness. Its effects on electrical conductivity – especially carrier mobility, which significantly decreases with increasing roughness – allow to discuss the limitations in conduction mechanisms. Significant changes in light scattering capability due to variations in morphology are also investigated and discussed to study the correlation between morphology and functional properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fortunato, E., Ginley, D., Hosono, H., and Paine, D. C., MRS Bull. 32, 242 (2007).10.1557/mrs2007.29CrossRefGoogle Scholar
Minami, T., Semicond. Sci. Tech. 20, S35 (2005).10.1088/0268-1242/20/4/004CrossRefGoogle Scholar
Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., and Avrutin, V., J. Appl. Phys. 98, 1 (2005).10.1063/1.1992666CrossRefGoogle Scholar
Janotti, A. and Van de Walle, C. G., Rep. Prog. Phys. 72, 126501 (2009).10.1088/0034-4885/72/12/126501CrossRefGoogle Scholar
Ellmer, K., Nature Photon. 6, 809 (2012).10.1038/nphoton.2012.282CrossRefGoogle Scholar
Ko, D.-H., Tumbleston, J. R., Gadisa, A., Aryal, M., Liu, Y., Lopez, R., and Samulski, E. T., J. Mater. Chem. 21, 16293 (2011).10.1039/c1jm12300aCrossRefGoogle Scholar
Grätzel, M., Acc. Chem. Res. 42, 1788 (2009).10.1021/ar900141yCrossRefGoogle Scholar
Di Fonzo, F., Casari, C. S., Russo, V., Brunella, M. F., Bassi, a Li, and Bottani, C. E., Nanotechnology 20, 015604 (2009).10.1088/0957-4484/20/1/015604CrossRefGoogle Scholar
Dellasega, D., Facibeni, A., Di Fonzo, F., Bogana, M., Polissi, A., Conti, C., Ducati, C., Casari, C. S., Li Bassi, A., and Bottani, C. E., Nanotechnology 19, 475602 (2008).10.1088/0957-4484/19/47/475602CrossRefGoogle Scholar
Bailini, A., DiFonzo, F., Fusi, M., Casari, C. S., LiBassi, A., Russo, V., Baserga, A., and Bottani, C. E., Appl. Surf. Sci. 253, 8130 (2007).10.1016/j.apsusc.2007.02.145CrossRefGoogle Scholar
Zhang, M. Y. and Cheng, G. J., Appl. Phys. Lett. 99, 051904 (2011).10.1063/1.3622645CrossRefGoogle Scholar
Lorenz, M., von Wenckstern, H., and Grundmann, M., Adv. Mater. 23, 5383 (2011).10.1002/adma.201103087CrossRefGoogle Scholar
Gondoni, P., Ghidelli, M., Di Fonzo, F., Russo, V., Bruno, P., Martí-Rujas, J., Bottani, C. E., Li Bassi, A., and Casari, C. S., Thin Solid Films 520, 4707 (2012).10.1016/j.tsf.2011.10.072CrossRefGoogle Scholar
Gondoni, P., Mazzolini, P., Russo, V., Petrozza, A., Avanish, K., Bassi, A. L., and Casari, C. S., arXiv:1311.7014 [cond-mat.mtrl-sci].Google Scholar
Gondoni, P., Ghidelli, M., Di Fonzo, F., Carminati, M., Russo, V., Bottani, C. E., Li Bassi, A., and Casari, C. S., Nanotechnology 23, 365706 (2012).10.1088/0957-4484/23/36/365706CrossRefGoogle Scholar
Gondoni, P., Ghidelli, M., Di Fonzo, F., Li Bassi, A., and Casari, C. S., J. Vis. Exp. 72, e50297 (2013).Google Scholar
Janotti, A. and Van de Walle, C. G., Appl. Phys. Lett. 87, 122102 (2005).10.1063/1.2053360CrossRefGoogle Scholar