Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T08:37:28.775Z Has data issue: false hasContentIssue false

Multiferroic BiFeO3/BaTiO3 thin films fabricated by chemical solution deposition technique

Published online by Cambridge University Press:  19 June 2015

Savita Sharma*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India Department of Applied Physics, Delhi Technological University, Delhi 110042, India
Monika Tomar
Affiliation:
Physics Department, Miranda House, University of Delhi, Delhi 110007, India
Ashok Kumar
Affiliation:
CSIR-National Physical Laboratory, Dr. K.S .Krishnan Marg, New Delhi-110012, India
Nitin K. Puri
Affiliation:
Department of Applied Physics, Delhi Technological University, Delhi 110042, India
Vinay Gupta*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
*
*E-mail Id : savita1234h@gmail.com, drguptavinay@gmail.comContact No. : +91 9811563101
*E-mail Id : savita1234h@gmail.com, drguptavinay@gmail.comContact No. : +91 9811563101
Get access

Abstract

The BiFeO3/BaTiO3 (BFO/BTO) multilayers were deposited on Pt/Ti/SiO2/Si substrates using sol-gel spin coating technique. The electric and magnetic studies on BFO/BTO multilayer structures were carried out for different number of layers. Enhancement in multiferroic properties were seen for all the prepared multilayers as compared to individual BTO and BFO thin films. Maximum value of ferroelectric polarization 71.18 µC/cm2 and saturation magnetization 69.85 emu/cm3 was obtained for multilayer structure having five layers. The observed enhancement in the multiferroic properties of the multilayer system is due to the increased interfacial stress and multiferroic coupling between the alternating layers.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, J., Zhang, T. J., Xiang, J. H. and Zhang, B. S., Mater. Chem Phys 108, 445–8 (2008).CrossRefGoogle Scholar
Polla, D. L., Francis, L. F., Annu Rev Mater Sci 28, 563–97 (1998).CrossRefGoogle Scholar
Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Scholm, D. G., Wuttig, M. and Ramesh, R., Science 299, 1719 (2003).CrossRefGoogle Scholar
Cai, W., Zhong, S., Fu, C., Chen, G. and Deng, X., Mater Res Bull 50, 259267 (2014).CrossRefGoogle Scholar
Ren, X., Nature Mater 3, 9194 (2004).CrossRefGoogle Scholar
Haertling, G. H., J Amer Ceram Society 82, 797818 (1999).CrossRefGoogle Scholar
Gupta, S., Tomar, M. and Gupta, V., J. Exp. Nanosci. 8(3), 261 (2013).CrossRefGoogle Scholar
Zhao, N., Wan, L., Cao, L., Yu, D., Yu, S., Sun, R., Mater Lett 65, (2011) 35743576.CrossRefGoogle Scholar
Ortega, N., Kumar, A., Katiyar, R.S., Rinaldi, C., J. Mater. Sci. 44 5127 (2009).CrossRefGoogle Scholar
Zhou, J.P., He, H., Shi, Z., Nan, C.W., Appl. Phys. Lett. 88 013111 (2006).CrossRefGoogle Scholar
Ortega, N., Bhattacharya, P., Katiyar, R.S., Dutta, P., Manivannan, A., Seehra, M.S., Takeuchi, I., Majumder, S.B., J. Appl. Phys. 100 126105 (2006).CrossRefGoogle Scholar
Murugavel, P., Singh, M.P., Prellier, W., Mercey, B., Simon, Ch. and Raveau, B., J. Appl. Phys. 97 103914 (2005).CrossRefGoogle Scholar
Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A. and Ramesh, R., Science 303 661 (2004).CrossRefGoogle Scholar
Toupet, H., Shvartsman, V.V., Le Marrec, F., Borisov, P., Kleemann, W. and Karkut, M., Integr. Ferroelectr. 100 165 (2008).CrossRefGoogle Scholar
Ivanov, M.S., Sherstyuk, N.E., Mishina, E.D., Sigov, A.S., Mukhortov, V.M. and Moshnyaga, V.T., Ferroelectrics 433 158 (2012).CrossRefGoogle Scholar
Chen, A., Zhou, H., Bi, Z., Zhu, Y., Luo, Z., Bayraktaroglu, A., Phillips, J., Choi, E.-M., MacManus-Driscoll, J.L., Pennycook, S.J., Narayan, J., Jia, Q., Zhang, X., Wang, H., Adv. Mater. 25 1028 (2013).CrossRefGoogle Scholar
Sharma, S., Tomar, M., Kumar, A., Puri, N. K. and Gupta, V., Physica B 448, (2014) 125127.CrossRefGoogle Scholar
Sharma, S., Tomar, M., Kumar, A., Puri, N. K. and Gupta, V., Adv Sci Lett 20, 13161320, 2014.CrossRefGoogle Scholar
Kumar, M., Srinivas, A., and Suryanarayana, S. V., J. Appl. Phys. 87(2), 855862 (2000).CrossRefGoogle Scholar
Chen, T., Wang, J., Zhong, X., Wang, F., Li, B. and Zhou, Y., Ceramics International (2013).Google Scholar
Nam, C.W., Appl. Phys. Lett. 81 954 (2007).Google Scholar
Ryu, J., Carazo, A.V., Uchino, K. and Kim, H.E., Jpn. J. Appl. Phys. 40 4948 (2001).CrossRefGoogle Scholar
Yang, P., Kim, K. M., Lee, J. Y., Zhu, J., and Lee, H. Y., Integ Ferro 113, 2630 (2009).CrossRefGoogle Scholar