Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T20:55:02.064Z Has data issue: false hasContentIssue false

Multilayer AlxGa1−xAs Heterostructures for Second-Harmonic Generation

Published online by Cambridge University Press:  25 February 2011

S. Janz
Affiliation:
Institute for Microstructural Sciences and Solid State Optoelectronics Consortium, National Research Council, Montreal Rd., Ottawa, Canada, K1A 0R6.
F. Chatenoud
Affiliation:
Institute for Microstructural Sciences and Solid State Optoelectronics Consortium, National Research Council, Montreal Rd., Ottawa, Canada, K1A 0R6.
H. Dai
Affiliation:
Institute for Microstructural Sciences and Solid State Optoelectronics Consortium, National Research Council, Montreal Rd., Ottawa, Canada, K1A 0R6.
E. Vilks
Affiliation:
Institute for Microstructural Sciences and Solid State Optoelectronics Consortium, National Research Council, Montreal Rd., Ottawa, Canada, K1A 0R6.
M. Buchanan
Affiliation:
Institute for Microstructural Sciences and Solid State Optoelectronics Consortium, National Research Council, Montreal Rd., Ottawa, Canada, K1A 0R6.
R. Normandin
Affiliation:
Institute for Microstructural Sciences and Solid State Optoelectronics Consortium, National Research Council, Montreal Rd., Ottawa, Canada, K1A 0R6.
A. J. Springthorpe
Affiliation:
Bell-Northern Research, P.O. Box 3511, Station C, Ottawa, Canada, KlY 4H7.
Get access

Abstract

Quasi-phase matching in AlxGa1−xAs heterostructure optical waveguides can be used for efficient second-harmonic (SH) generation. The efficiency of these devices depends on the linear and nonlinear optical properties of the component materials. We present measurements of the SH susceptibility variation in AlxGa1−xAs with Al concentration, for fundamental light at λ = 1.06 μ. The measured SH susceptibility decreases by an order of magnitude as the Al concentration is varied from x = 0 to x = 0.97. These measurements are used to evaluate the SH generation efficiency of AlxGa1−xAs heterostructures as the structural and material parameters are varied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Normandin, R., Letourneau, S., Chatenoud, F., and Williams, R.L., IEEE J. Quantum Electron. 27, 1520 (1991).Google Scholar
2. Vakhshoori, D. and Wang, S., J. Lightwave Technol. 9, 906 (1991).Google Scholar
3. Normandin, R. and Stegeman, G.I., Optics Lett. 4, 58 (1979).Google Scholar
4. Normandin, R., Williams, R.L., and Chatenoud, F., Electron. Lett. 26, 2088 (1990).Google Scholar
5. Dai, H., Janz, S., Normandin, R., Nielsen, J., Chatenoud, F., and Williams, R., IEEE Photon. Technol. Lett. 4, 820 (1992).Google Scholar
6. Yariv, A., Quantum Electronics, 2nd ed. (John Wiley & Sons, New York, 1975), p. 416.Google Scholar
7. Shen, Y.R., The Principles of Nonlinear Optics,{John Wiley & Sons, New York, 1984).Google Scholar
8. Ohashi, M., Kondo, T., Ito, R., Fukatsu, S., Shiraki, Y., Kumata, K., and Kano, S. S., in Nonlinear Optics: Materials, Fundamentals, and Applications Technical Digest, 1992, Vol. 18, 63 (Optical Society of America, Washington, D.C., 1992).Google Scholar
9. Bethune, D., Schmidt, A.J., and Shen, Y.R., Phys. Rev. B 11, 3867 (1975).Google Scholar
10. Yeganeh, M.S., Qi, J., Culver, J., Yodh, A.G., and Tamargo, M.C., in Quantum Electronics and Laser Science Conference, 1992 OSA Technical Digest Series, Vol. 13, (Optical Society of America, Washington D.C., 1992) pp. 5253.Google Scholar
11. Sipe, J.E., J. Opt. Soc. Am. B 4, 481, (1987).Google Scholar
12. Aspnes, D.E., Kelso, S.M., Logan, R.A. and Bhat, R., J. Appl. Phys. 60, 754 (1986);Google Scholar
Hunsperger, R.G., Integrated Optics: Theory and Technology, 3rd ed. (Springer-Verlag, Berlin, 1991) pp. 5862.Google Scholar