Published online by Cambridge University Press: 01 February 2011
A comprehensive understanding of nanotube materials requires the ability to link different carbon nanotube models, which were developed to work at different length scales. Here we describe the mapping of a molecular dynamics (MD) model for single-wall carbon nanotubes onto a wormlike chain. This mapping employs a mode analysis of the bending fluctuations of the nanotube, similar to those used in experiments [1]. The essence of this mapping is to find an appropriate bending stiffness for the wormlike cha in in order to represent the nanotube on a coarsened scale. We find that this mapping will only work well, if the wavelength probing the nanotube stiffness is sufficiently large. For single-wall (9,9) armchair nanotubes vibration modes with node distances of 3 nm underestimate the long wavelength limit of the bending constant by about 50%. This mismatch tends to increase for tubes with larger radii.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.