Published online by Cambridge University Press: 31 January 2011
Recent experimental and theoretical studies have shown that the thermal to electrical power conversion efficiency (as measured by the thermoelectric figure of merit) can be enhanced in nanocomposite materials. Primarily, these efforts to improve the thermoelectric efficiency rely on reducing the lattice thermal conductivity through nanostructuring of the materials or the introduction of a second nanometer-scale phase into the composite material. Here, we show that the inclusion of semimetal nanoparticles into bismuth telluride (Bi2Te3) can result in both an increase in the electronic transport properties (so called "power factor") as well as a decrease in lattice thermal conductivity. The effect of different volume fractions of Bi nanoinclusions (3% and 5%) on the thermal and electrical properties of the composite are reported. A marginal increase in the thermoelectric figure of merit is achieved for 3% metal nanoinclusion, whereas a significant improvement in the figure of merit could be achieved for 5% nanoinclusions in the Bi2Te3 thermoelectric matrix.