Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T23:19:35.720Z Has data issue: false hasContentIssue false

Nano-Encapsulation of Glucose Oxidase Dimer by Graphene

Published online by Cambridge University Press:  27 February 2015

Umesh Ghoshdastider
Affiliation:
International Institute of Molecular and Cell Biology, Warszawa, Poland
Rongliang Wu
Affiliation:
International Institute of Molecular and Cell Biology, Warszawa, Poland
Bartosz Trzaskowski
Affiliation:
Faculty of Chemistry, University of Warsaw, Warszawa, Poland
Krzysztof Mlynarczyk
Affiliation:
Faculty of Chemistry, University of Warsaw, Warszawa, Poland
Przemyslaw Miszta
Affiliation:
Faculty of Chemistry, University of Warsaw, Warszawa, Poland
Manickam Gurusaran
Affiliation:
Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
Sowmya Viswanathan
Affiliation:
Wellesley Hospital/Partners Healthcare System, Newton, Massachusetts, USA.
Venkatesan Renugopalakrishnan
Affiliation:
Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
Slawomir Filipek*
Affiliation:
Faculty of Chemistry, University of Warsaw, Warszawa, Poland
*
*Corresponding Author: sfilipek@chem.uw.edu.pl
Get access

Abstract

Using all-atom molecular dynamics simulations in water environment, it was possible to demonstrate spontaneous and tight encapsulation of glucose oxidase (GOx) dimer by graphene 7 nm x 7 nm sheets linked together by linkers of different width and forming a flower-like or cross-like shapes. The partially overlapping graphene sheets compacted the structure of GOx dimer, bringing the monomers much closer to one another. We found that the most complete wrapping of the enzyme was achieved for the cross-like graphene. Encapsulation can be a useful way to obtain a large contact surface. However, an exceptionally tight binding by the graphene can also influence the positions of amino acids in the enzyme binding site resulting in less efficient catalytic reaction. Furthermore, such extensive encapsulation could block the access of the substrate to the active site of the enzyme. Contrary, a partial encapsulation by graphene using nano-sheets caused only small distortions of GOx structure while the contact surface with graphene was high.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally.

§

Present Addresses: UG: Institute of Molecular and Cell Biology (A*STAR), Singapore. RW: College of Material Science and Engineering, Donghua University, Shanghai, China.

References

REFERENCES

Clark, L.C. Jr. and Lyons, C., Ann. N. Y. Acad. Sci. 102, 29 (1962).CrossRefGoogle Scholar
Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J. and Braet, F., Angew. Chem. Int. Ed. 49, 2114 (2010).CrossRefGoogle Scholar
Liu, Z., Ma, L., Shi, G., Zhou, W., Gong, Y., Lei, S., Yang, X., Zhang, J., Yu, J., Hackenberg, K.P., Babakhani, A., Idrobo, J.C., Vajtai, R., Lou, J. and Ajayan, P.M., Nat. Nanotechnol. 8, 119 (2013).CrossRefGoogle Scholar
Geim, A.K. and Novoselov, K.S., Nature materials 6, 183 (2007).CrossRefGoogle Scholar
Park, S. and Ruoff, R.S., Nature nanotechnology 4, 217 (2009).CrossRefGoogle Scholar
Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A. and Aksay, I.A., The Journal of Physical Chemistry B 110, 8535 (2006).CrossRefGoogle Scholar
Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J. and Marchenkov, A.N., Science 312, 1191 (2006).CrossRefGoogle Scholar
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y. and Hong, B.H., Nature 457, 706 (2009).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I. and Tutuc, E., Science 324, 1312 (2009).CrossRefGoogle Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S. and Kong, J., Nano letters 9, 30 (2008).CrossRefGoogle Scholar
Lin, Y.-M., Valdes-Garcia, A., Han, S.-J., Farmer, D.B., Meric, I., Sun, Y., Wu, Y., Dimitrakopoulos, C., Grill, A. and Avouris, P., Science 332, 1294 (2011).CrossRefGoogle Scholar
Nair, R.R., Blake, P., Blake, J.R., Zan, R., Anissimova, S., Bangert, U., Golovanov, A.P., Morozov, S.V., Geim, A.K. and Novoselov, K.S., Applied Physics Letters 97, 153102 (2010).CrossRefGoogle Scholar
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. and Novoselov, K.S., Nature materials 6, 652 (2007).CrossRefGoogle Scholar
Stoller, M.D., Park, S., Zhu, Y., An, J. and Ruoff, R.S., Nano letters 8, 3498 (2008).CrossRefGoogle Scholar
Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I. and Geim, A.K., Science 323, 610 (2009).CrossRefGoogle Scholar
Loh, K.P., Bao, Q., Ang, P.K. and Yang, J., Journal of Materials Chemistry 20, 2277 (2010).CrossRefGoogle Scholar
Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S. and Yuan, S., Small 6, 2877 (2010).CrossRefGoogle Scholar
Narayanan, T.N., Ajayan, P.M., Viswanathan, S., Gurusaran, M. and Renugopalakrishnan, V.: Engineered 2D Materials for Efficient Biosensors, in 2014 MRS Fall Meeting (Cambridge University Press ( CUP ) / Materials Research Society ( MRS ), Boston, 2014).Google Scholar
Viswanathan, S., Narayanan, T.N., Fink, K.D., Paredes, J., Ajayan, P.M., Filipek, S., Miszta, P., Gurusaran, M., Tekin, C., Inci, F., Demirci, U., Li, P., Bolotin, K.I., Liepmann, D. and Renugopalakrishanan, V., Materials Today (2014).Google Scholar
Kuila, T., Bose, S., Khanra, P., Mishra, A.K., Kim, N.H. and Lee, J.H., Biosensors and Bioelectronics 26, 4637 (2011).CrossRefGoogle Scholar
Raba, J. and Mottola, H.A., Critical reviews in Analytical chemistry 25, 1 (1995).CrossRefGoogle Scholar
Wang, J., Chemical reviews 108, 814 (2008).CrossRefGoogle Scholar
Xiao, Y., Patolsky, F., Katz, E., Hainfeld, J.F. and Willner, I., Science 299, 1877 (2003).CrossRefGoogle Scholar
Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R. and Kim, K.S., Chemical reviews 112, 6156 (2012).CrossRefGoogle Scholar
Wohlfahrt, G., Witt, S., Hendle, J., Schomburg, D., Kalisz, H.M. and Hecht, H.J., Acta Crystallogr. D. Biol. Crystallogr. 55, 969 (1999).CrossRefGoogle Scholar
Humphrey, W., Dalke, A. and Schulten, K., J. Mol. Graph. 14, 33 (1996).CrossRefGoogle Scholar
Kaminski, G.A., Friesner, R.A., Tirado-Rives, J. and Jorgensen, W.L., J. Phys. Chem. B 105, 6474 (2001).CrossRefGoogle Scholar
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. and Hermans, J.: Interaction Models for Water in Relation to Protein Hydration, in Intermolecular Forces, edited by Pullman, B. (D. Reidel Publishing Company, Dordrecht, 1981), pp. 331.Google Scholar
Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. and Pedersen, L.G., J. Chem. Phys. 103, 8577 (1995).CrossRefGoogle Scholar
Bussi, G., Donadio, D. and Parrinello, M., J. Chem. Phys. 126 (2007).CrossRefGoogle Scholar
Berendsen, H.J.C., Postma, J.P.M., Vangunsteren, W.F., Dinola, A. and Haak, J.R., J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
Hess, B., Bekker, H., Berendsen, H.J.C. and Fraaije, J., J. Comput. Chem. 18, 1463 (1997).3.0.CO;2-H>CrossRefGoogle Scholar
Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
Hess, B., Kutzner, C., van der Spoel, D. and Lindahl, E., J. Chem. Theory Comput. 4, 435 (2008).CrossRefGoogle Scholar
Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E. and Berendsen, H.J.C., J. Comput. Chem. 26, 1701 (2005).CrossRefGoogle Scholar
Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J. and Kollman, P., J. Comput. Chem. 24, 1999 (2003).CrossRefGoogle Scholar
Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A. and Case, D.A., J. Comput. Chem. 25, 1157 (2004).CrossRefGoogle Scholar
Nose, S., J. Chem. Phys. 81, 511 (1984).CrossRefGoogle Scholar
Hoover, W.G., Phys. Rev. A 31, 1695 (1985).CrossRefGoogle Scholar
Bellido, E.P. and Seminario, J.M., J. Phys. Chem. C 114, 22472 (2010).CrossRefGoogle Scholar
Chen, Y., Guo, F., Jachak, A., Kim, S.P., Datta, D., Liu, J., Kulaots, I., Vaslet, C., Jang, H.D., Huang, J., Kane, A., Shenoy, V.B. and Hurt, R.H., Nano Lett. 12, 1996 (2012).CrossRefGoogle Scholar