Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T10:29:18.500Z Has data issue: false hasContentIssue false

Nano-Mg/Al hydrotalcite: Physicochemical Characterization and Removal of As(III) from Aqueous solutions

Published online by Cambridge University Press:  25 February 2014

E. Ramos-Ramírez*
Affiliation:
Departamento de Química, División de Ciencias Naturales y Exactas de la Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, C.P.36050, Guanajuato, Gto., México.
N. L. Gutiérrez-Ortega
Affiliation:
Departamento de Ingeniería Civil, División de Ingenierías de la Universidad de Guanajuato, Juarez No. 77, Col. Centro, C.P.36000, Guanajuato, Gto., México.
G. Rangel-Porras
Affiliation:
Departamento de Química, División de Ciencias Naturales y Exactas de la Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, C.P.36050, Guanajuato, Gto., México.
G. Herrera-Pérez
Affiliation:
Departamento de Ingeniería en Materiales, Instituto Tecnológico Superior de Irapuato, Carretera Irapuato-Silao km 12.5, Irapuato, Gto., México.
*
Get access

Abstract

Arsenic is one of the most toxic elements that can be found. Arsenic is mainly emitted by the copper, lead and zinc production, in agriculture as pesticides and herbicides. Two forms of arsenic are common in natural waters: arsenite (AsO33−) and arseniate (AsO43−), referred to as As(III) and As(V). The nano-Mg/Al-hydrotalcites present ionic exchange and adsorbent capacities. In this work, the physic-chemical characterization of nano-Mg/Al-hydrotalcites and his arsenic removal capacityis described. The solids were synthesized by the sol-gel method with Mg/Al=2 and 3 ratio. The solids and their thermal treated products were characterized by XRD, FTIR, DTA, TGA and N2 adsorption. The solids were used as adsorbents As(III) in aqueous solutions. Adsorption isotherm studies of As(III) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin–Radushkevich adsorption isotherm models. The As(III) adsorption isotherm data fit best to the isotherm Freundlich model. The maximum As(III) uptake capacity by nano-Mg/Al-hydrotalcites and the heated solids were determined using the Freundlich equation and were found to 547.46, 660.15, 799.88 and 739.12 mg As(III)/g HT-Mg/Al=2, HT-Mg/Al=3, HT-Mg/Al=2 at 350°C and HT-Mg/Al=3 at 350°C respectively. In the kinetic studies using 40 mg/L concentration of As(III) solutions was obtained an excellent removal capacity in contact times less at one minute.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chatterjee, A., Das, D., Mandal, B.K., Chowdhury, T.R., Samanta, G., Chakraborty, D., India: the biggest arsenic calamity in the world. Part 1 Analyst.120 (1995) 643656.CrossRefGoogle Scholar
Guha Mazumder, D.N., Indian J Med Res. 128 (2008) 436447.Google Scholar
Department of Health and Human Services, Report on Carcinogens, Arsenic and Inorganic Arsenic Compounds, Twelfth ed, National Toxicology Program, National Toxicology Program, Department of Health and Human Services, United States, 2011.Google Scholar
Mohan, D., Pittman, C. U. Jr., J. Hazard. Mater. 142 (2007) 153.CrossRefGoogle Scholar
Ali, I., Gupta, V. K., Khan, T. A., Asim, M., Int. J. Electrochem. Sci. 7 (2012) 18981907.Google Scholar
Mondal, P., Majumder, C.B., Mohanty, B., J. Hazard. Mater. 137 (2006) 464479.CrossRefGoogle Scholar
Han, D.S., Song, J.K., Batchelor, B., Abdel-Wahab, A, J. Colloid Interface Sci. 39 (2012) 311318.Google Scholar
Shaheen, S. M., Derbalah, A. S., Moghanm, F. S., International, J. Environ. Sci. Development. 3 (2012) 362367.CrossRefGoogle Scholar
Addo Ntim, S., Mitra, S., Follow J. Colloid Interface Sci. 375 (2012) 154159.CrossRefGoogle Scholar
Wu, K., Liu, R., Liu, H., Zhao, X., Qu, J., J. Environ. Eng. Sci. 28 (2011) 643651.CrossRefGoogle Scholar
Palmer, S. J., Frost, R. L., J. Raman Spectrosc. 42 (2011) 224229.CrossRefGoogle Scholar
Gillman, G.P., Sci. Total Environ. 366 (2006) 926931.CrossRefGoogle Scholar
Jobbágy, M., Regazzoni, A. E., J Colloid Interface Sci. 8 (2012) 314318.Google Scholar
Mills, S. J., Christy, A. G., Génin, J.M. R., Kameda, T., Colombo, F., Mineralogical Magazine, 76 (2012) 12891336.CrossRefGoogle Scholar
Trifiro, F., Vaccari, A., Hydrotalcite anionic clays (layered double hydroxides), in Comprehensive Supramolecular Chemistry, 7 (ed. D.D. MacNicol, F. Vögtle, F.), Pergamon Press, Oxford, 1996, 251291.Google Scholar