Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T08:35:06.620Z Has data issue: false hasContentIssue false

Nanoscale investigation of polar structure of (1-x)PbMg1/3Nb2/3O3-xPbTiO3 single crystals

Published online by Cambridge University Press:  01 February 2011

V. V. Shvartsman
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810–193 Aveiro, Portugal
M. Wojtas
Affiliation:
Faculty of Chemistry University of Wroclaw, Joliot-Curie 14, 50–383 Wroclaw, Poland
S. Vakhrushev
Affiliation:
A. F. Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
A. L. Kholkin
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810–193 Aveiro, Portugal
Get access

Abstract

ABSTRACT (1-x)PbMg1/3Nb2/3O3-xPbTiO3 (PMN-PT) single crystals of different compositions were studied via piezoresponse force microscopy (PFM). Piezoelectric contrast has been observed in 0.9PMN-0.1PT above the temperature of structural transition indicating spatial distribution of polarization and was attributed to the existence of polar clusters. The domain patterns were found to change drastically with increasing Ti content. In particular, the piezoresponse images of 0.8PMN-0.2PT combine both relaxor and ferroelectric features and in 0.65PMN-0.35PT crystals only micron-sized ferroelectric domains were observed. The evolution of the polar structures with increasing temperature and under external electric field was also investigated. The nature of the observed phenomena is discussed based on the current understanding of the relaxor state in ferroelectrics and possible influence of PFM instrumentation

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, S.-E., Shrout, T. R., J. Appl. Phys., 82, 1804 (1997).10.1063/1.365983Google Scholar
2. Vakhrushev, S., Naberezhnov, A., Sinha, S. K., Feng, Y. P., and Egami, T., J. Phys. Chem. Solids, 57, 1517 (1996).10.1016/0022-3697(96)00022-4Google Scholar
3. Vakhrushev, S. B., Kvyatkovsky, B. E., Naberezhnov, A. A., Okuneva, N. M., and Toperverg, B. P., Ferroelectrics, 90, 173 (1989).10.1080/00150198908211287Google Scholar
4. Miao, S., Zhu, J., Zhang, X., and Cheng, Z.-Y., Phys. Rev. B, 65, 052101 (2001).10.1103/PhysRevB.65.052101Google Scholar
5. Gruverman, A., Auciello, O., and Tokumoto, H., Annu. Rev. Mater. Sci. 28, 101 (1998).10.1146/annurev.matsci.28.1.101Google Scholar
6. Smolenskii, G. A., Isupov, V. A., Agranovskaja, A. I., and Popov, S. N., Sov. Phys. Solid State 2, 2584 (1960).Google Scholar
7. de Mathant, N., Hussont, E., Calvarint, G., Gavarris, J. R., Hewat, A. W., and Morell, A, J. Phys.: Condens. Matter. 3, 8159 (1991).Google Scholar
8. Noblanc, O., Gaucher, P., and Calvarin, G., J. Appl. Phys. 79, 4261 (1996).10.1063/1.361865Google Scholar
9. Dkhil, B., Kiat, J. M., Calvarin, G., Baldinozzi, G., Vakhrushev, S. B., and Suard, E., Phys. Rev. B 65, 024104 (2002).10.1103/PhysRevB.65.024104Google Scholar
10. Ye, Z.-G., Bing, Y., Gao, J., Bokov, A. A., Stephens, P., Noheda, B., and Shirane, G., Phys. Rev. B 67, 104104 (2003).10.1103/PhysRevB.67.104104Google Scholar
11. Xu, G., Viehland, D., Li, J. F., Gehring, P. M., and Shirane, G., cond-mat/0307144 v2 (unpublished).Google Scholar
12. Munoz, R. C., Vidal, G., Mulsow, M., Lisoni, J. G., Arenas, C., and Concha, A., Phys. Rev. B, 62, 4686 (2000).10.1103/PhysRevB.62.4686Google Scholar
13. Vakhrushev, S. B., Naberezhnov, A. A., Dkhil, B., Kiat, J.-M., Shvartsman, V., Kholkin, A., Dorner, B., and Ivanov, A., AIP Conf. Proc. 67, 74 (2003).10.1063/1.1609940Google Scholar
14. Lehnen, P., Kleemann, W., Woike, Th., Pankrath, P., Phys. Rev. B 64, 224109 (2001).10.1103/PhysRevB.64.224109Google Scholar
15. Bdikin, I. K., Shvartsman, V. V., and Kholkin, A. L., Appl. Phys. Lett. 83, 4232 (2003).10.1063/1.1627476Google Scholar
16. Samara, G. A., J. Phys.: Condens. Matter 15, R367 (2003).Google Scholar
17. Xu, G., Shirane, G., Copley, J. R. D., and Gehring, P. M., cond-mat/0308170 v2 (unpublished).Google Scholar
18. Noheda, B., Cox, D. E., Shirane, G., Gao, J., and Ye, Z.-G., Phys. Rev. B 66, 054104 (2002).10.1103/PhysRevB.66.054104Google Scholar
19. Bokov, A. A. and Ye, Z.-G., J. Appl. Phys. 91, 6656 (2002)10.1063/1.1471371Google Scholar