Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T18:27:31.939Z Has data issue: false hasContentIssue false

NDT Applications of the 3D Radon Transform Algorithm for Cone Beam Reconstruction

Published online by Cambridge University Press:  22 February 2011

P. Sire
Affiliation:
LETI – Département Systèmes - SETIA, Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX –FRANCE
P. Grangeat
Affiliation:
LETI – Département Systèmes - SETIA, Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX –FRANCE
P. Lemasson
Affiliation:
LETI – Département Systèmes - SETIA, Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX –FRANCE
P. Mélennec
Affiliation:
LETI – Département Systèmes - SETIA, Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX –FRANCE
P. Rizo
Affiliation:
LETI – Département Systèmes - SETIA, Centre d'Etudes Nucléaires de Grenoble 85 X - 38041 GRENOBLE CEDEX –FRANCE
Get access

Abstract

The paper describes our 3D X-ray CT algorithm “RADON” using attenuation measurements acquired with a bidimensional detector. Our inversion diagram uses the first derivative of the Radon transform synthesis then its inversion. The potentiality of that new method, particularly for the large aperture, prompted us to develop an optimized software offering convenience and high performances on a modem scientific computer. After a brief recall of the basic principle of X-ray imaging processing, we will introduce the theoretical developments resulting in the present inversion diagram. A general algorithm structure will be proposed afterwards. As a conclusion we will present the performances and the results obtained with ceramic rotors examination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Feldkamp, L. A., Davis, L.C., Kress, J.W. (1984). “Practical cone-beam algorithm”. J. Opt. Soc. Am., 1 (6), 612619.CrossRefGoogle Scholar
Grangreat, P. (1990) “Mathematical framework of cone beam 3D reconstruction via the first derivative of the RADON transform” in Herman, G.T., Louis, A.K., Natterer, F.. Mathematical Methods in Tomography. Lecture Notes in Mathematics. Springer – Verlag.Google Scholar
Marr, R.B., Chen, C., Lauterbur, P.C. (1980). “On two approaches to 3D reconstruction in NMR zeugmatography” in Herman, G.T. and Natterer, F., Mathematical Aspects of Computerized Tomography, 225240, Springer – Verlag.Google Scholar
Natterer, F. (1986). The Mathematics of Computerized Tomography. Wiley/Teubner.CrossRefGoogle Scholar
Rizo, Ph., Ellingson, W.A. (1990a). “An initial comparison between two 3D X-ray CT algorithms for characterizing ceramic materials”. Proc. of the conference on Non Destructive Evaluation of Modern Ceramics, Columbus, Ohio, July 9 - 12.Google Scholar
Rizo, Ph., Grangeat, P., Sire, P., Le, Masson P., Melennec, P. (1990b). “Comparison of two 3D cone beam reconstruction algorithm with a circular source trajectory”. Submitted to J. Opt. Soc. Am.CrossRefGoogle Scholar
Rizo, Ph., Grangeat, P., Sire, P., Le, Masson P., Delageniere, S. (1990c). “Cone beam 3D reconstruction with a double circular trajectory”. Communication at the 1990 Fall Meeting of the Material Research Society, Boston.Google Scholar