Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T23:11:15.978Z Has data issue: false hasContentIssue false

New Approach for Predicting the Long-Term Behavior of Bentonite: The Unified Method of Molecular Dynamics and Homogenization Analysis

Published online by Cambridge University Press:  10 February 2011

K. Kawamura
Affiliation:
Dept of Earth & Planetary Sci., Tokyo Institute of Tech., Meguro-ku, Tokyo 152, Japan, kats@geo.titech ac.jp
Y. Ichikawa
Affiliation:
Dept of Geotech. & Env. Eng., Nagoya Univ., Nagoya 464-01, Japan; a40346a@nucc.cc.nagoya-u acjp
M. Nakano
Affiliation:
Dept of Biological & Env. Eng., Univ. of Tokyo, Bunkyo-ku, Tokyo 113, Japan; ahannya@hongo.ecc.u-tokyo acjp
K. Kitayama
Affiliation:
Tokyo Electric Power Co., Chiyoda-ku, Tokyo 100, Japan
H. Kawamura
Affiliation:
Obayashi Co., Bunkyo-ku, Tokyo 113, Japan
Get access

Abstract

For predicting the long-term behavior of bentonite, we present a new and unified simulation procedure of Molecular Dynamics Method (MD) and Homogenization Analysis (HA). The MD is applied to establish molecular-scale bentonite properties and the HA is introduced to extrapolate the molecular model to the bulk-scale continuum model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahrens, T.J. (1995); Mineral Physics and Crystallography, AGU.Google Scholar
Bakhvalov, N., & Panasenko, G (1984); Homogenization: Averaging Processes in Periodic Media, Nauka Pu., (English Trans. Kluwer Academic Pub. 1989).Google Scholar
Boek, E.S., Coveney, P.V, & Skipper, N.T. (1995a), “Molecular modeling of clay hydration: A study of hysteresis loops in the swelling curves of sodium montmorillonites”, Langmuir, 11, 46294631.Google Scholar
Boek, E.S., Coveney, P.V., & Skipper, N.T. (1995b), “Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectite: Understanding the role of potassium as a clay swelling inhibitor”, J. Am. Chem. Soc., 117, 1260812617.Google Scholar
Delville, A. & Sokolowski, A (1993); “Adsorption of vapor at a solid interface: A molecular model of clay wetting”, J. Phys. Chem., 97, 62616271.Google Scholar
Delville, A. (1995), “Monte Carlo simulations of surface hydration: An application to clay wettingJ Phys. Chem., 99, 20332037.Google Scholar
Frenkel, D. & Smit, B. (1996); Understanding molecular simulation - From algorithms to applications, Academic Pr.Google Scholar
Fu, M.H., Zhang, Z.Z, & Low, P.F. (1990); “Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water hysteresis”, Clays and Clay Minerals, 38, 485492.Google Scholar
Ichikawa, Y, Wang, J.G, & Jeong, G.-C. (1996), “Micro/Macro Properties of Geomaterials: A Homogenization Method for Viscoelastic Problem”, Int. J. Structural Eng. and Mech., Vol.4, No.6, 631644.Google Scholar
Karabomi, S., Smit, B., Heidug, W., Urai, J., & van Oort, E (1996), “The swelling of clays: Molecular simulations of the hydration of montmorillonite”, SCIENCE, 271, 11021104.Google Scholar
Kawamura, K. (1992); “Interatomic potential models for molecular dynamics simulations of multi-component oxides”, in Molecular Dynamics Simulations (ed. Yonezawa, F.), Springer, 8897.Google Scholar
Kumagai, N., Kawamura, K., & Yokokawa, T. (1994), “An interatomic potential model for H2O: applications to water and ice polymorphs Mol.., 12(3-6), 177186.Google Scholar
Sanchez-Palencia, E. (1980); Non-Homogeneous Media and Vibration Theory, Springer-Verlag.Google Scholar
Seiki, T., Wani, M., Wang, J.G, and Ichikawa, Y (1996); “A Homogenization Theory for Elasto-Visco-Plastic Materials and Its Application for Rock and Soil”, roc. Asia-Pacific Symp. Advances in Eng. Plasticity and Its Applications, Hiroshima 1996, ed Abe, T. et al. , Pergamon Pr., 427432.Google Scholar
Skipper, N.T., Chang, F.-R.C., & Sposito, G (1995), “Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1 Methodology”, Clays and Clay Minerals, 43(3), 285293.Google Scholar
Skipper, N.T., Sposito, G, & Chang, F.-R.C. (1995), “Monte Carlo simulation of interlayer molecular structure in swelling clay minerals: 2. Monolayer hydrates”, Clays and Clay Minerals, 43(3), 294303.Google Scholar
Teppen, B.J., Rasmussen, K., Bertsch, P.M., Miller, D.M., & Schaefer, L. (1997); “Molecular modeling of clay minerals. 1. Gibbsite, Kaolinite, pyrophyllite, and beidellite”, J. Phys. Chem. B, 101, 15791587.Google Scholar