Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T22:35:59.127Z Has data issue: false hasContentIssue false

New High-Dielectric-Constant Polymer-Ceramic Composites

Published online by Cambridge University Press:  01 February 2011

Milind Arbatti
Affiliation:
Materials Research and Education Center, Auburn University, Auburn, AL 36849
Xiaobing Shan
Affiliation:
Materials Research and Education Center, Auburn University, Auburn, AL 36849
Z.-Y. Cheng
Affiliation:
Materials Research and Education Center, Auburn University, Auburn, AL 36849
Get access

Abstract

A ceramic-powder polymer composite, making use of a newly developed ceramics - CaCu3Ti4O12 (CCTO) - that has a giant dielectric constant as the filler, is developed. In this work, poly(vinylidene fluoride - trifluoroethylene) [P(VDF-TrFE)] 55/45 mol% copolymer was used as matrix. It is found that the wettability between the copolymer and CCTO is poor, which makes the solution cast composites have a poor uniformity. The uniformity and thus the dielectric constant of the composites can be significantly improved by using hot-press technology to form “sandwich” structure. It is also found that the thermal annealing process can improve the dielectric constant of the composite. The experimental data show that for the flexible composites the dielectric constant at 1 kHz can reach more than 300 at room temperature and more than 700 at ∼70 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Newnham, R. E., Annu. Rev. Mater. Sci. 16, 47 (1986).Google Scholar
[2]. Dias, C. J. and Das-Gupta, D. K., in Ferroelectric Polymer and Ceramic-Polymer Composites, edited by Das-Gupta, D. K. (Trans Tech PublicationsLtd., Switzerland, 1994), p. 217.Google Scholar
[3]. Dias, C. J. and Das-Gupta, D. K., IEEE Trans. Electr. Insul. 3, 706 (1996).Google Scholar
[4]. Hanner, K. A., Safari, A., Newnham, R. E., and Runt, J., Ferroelectrics 100, 255 (1989).Google Scholar
[5]. Gregorio, R. Jr, Cestari, M., and Bernardino, F. E., J. Mater. Sci. 31, 2925 (1996).Google Scholar
[6]. Chan, H. L. W., Chan, W. K., Zhang, Y., and Choy, C. L., IEEE Trans. Electr. Insul. 5, 505 (1998).Google Scholar
[7]. Cheng, Z.-Y., Katiyar, R. S., Yao, X., and Guo, A., Phys. Rev. B 55, 8165 (1997).Google Scholar
[8] Cheng, Z.-Y., Bharti, V., Xu, T.B., Xu, H.S., Mai, T., and Zhang, Q.M., Sens. & Actu. A-Phys. 90, 138147 (2001).Google Scholar
[9] Xu, H.S., Cheng, Z.-Y., Olson, D., Mai, T., Zhang, Q.M., and Kavarnos, G., Appl. Phys. Lett. 78, 23602362 (2001).Google Scholar
[10]. Xia, F., Cheng, Z.-Y., Xu, H.S., Li, H.F., Zhang, Q.M., Kavarnos, G.J., Ting, R.Y., Abdul-Sedat, G., and Belfield, K. D., Adv. Mater. 14, 15741577 (2002).Google Scholar
[11]. Bai, Y., Chengm, Z.-Y., Bharti, V., Xu, H.S. and Zhang, Q.M., Appl. Phys. Lett. 76, 3804 (2000).Google Scholar
[12]. Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T., Shapiro, S.M., Solid State Comm. 115, 217220 (2000).Google Scholar
[13]. Subramanian, M.A., Li, D., Duan, N., Reisner, B.A., and Sleight, A.W., J. Solid State Chem. 151, 323325 (2000).Google Scholar
[14] Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., and Ramirez, A.P., Science 293, 673676 (2001).Google Scholar
[15]. Subramanian, M.A. and Sleight, A.W., Solid State Sci. 4, 347351 (2002).Google Scholar