Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T01:12:30.736Z Has data issue: false hasContentIssue false

A new model for Boron diffusion retardation in SiGe-strained layers accounting for the mechanism of Boron trapping/detrapping by Ge atoms.

Published online by Cambridge University Press:  21 March 2011

Victor I. Kol'dyaev*
Affiliation:
PDF/Solutions, Inc (333 San Carlos, San Jose, 95110, CA, USA)
Get access

Abstract

The main drawbacks of the known models of the B diffusion in strained SiGe layers are summarized. A mechanism is suggested to self-consistently explain the main experimental features and original experimental data which considers the trapping of B atoms by Ge atoms during B diffusion in the Si lattice resulting in the retarded B diffusivity. Fluctuations of Ge atom numbers in a nearest B atom environment result in percolation mechanism of B transport through dilatation centers of random size. A new solid state transport modelis generalized by considering dispersion transport of positive and negative point dilatation defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fahey, P.M., Griffin, P.B., Plummer, J.D., Rev.Mod.Phys., vol.62, No.2, p.289, 1989.Google Scholar
2. Dorner, P., Gust, W., Predel, B., et.al.,, Phil.Mag., vol.49 (No.4), p.557, 1984.Google Scholar
3. Fahey, P., Iyer, S.S., Scila, G.J., Appl.Phys.Lett., vol.54, No.9, p.843, 1989.Google Scholar
4. Kuo, P., Hoyt, J.L., Gibbons, J.F., et.al., Appl.Phys.Lett., vol.62, No.6, p.612, 1993.Google Scholar
5. Kuo, P., Hoyt, J.L., Gibbons, J.F., et.al., Appl.Phys.Lett., vol.66, No.5, p.580, 1995.Google Scholar
6. Cowern, N.E.B., Zalm, P.C., Sluis, P. van der, Phys. Rev. Lett., vol.72 (No.16), p.2585, 1994.Google Scholar
7. Loechelt, G.H., Tam, G., Steele, J.W., et.al., J.Appl.Phys., vol.74, No.9, p.5520, 1997.Google Scholar
8. Krüger, D., Gaworzewski, P., Kurps, R., J.Vac.Sci.Tech., vol.B14, No.1, p.341, 1996.Google Scholar
9. Hu, S.M., Phys. Rev. Lett., vol.63, No.22, p.2492, 1989.Google Scholar
10. Hu, S.M., Ahlgren, D.C., Ronsheim, P.A., Phys. Rev. Lett., vol.67, No.11, p.1450, 1991.Google Scholar
11. Hu, S.M., Phys. Rev. (B), vol.45, No.8, p.4498, 1992.Google Scholar
12. Fang, T.T., Fang, W.T.C., Griffin, P.B., Appl.Phys.Lett., vol.68, No.6, p.791, 1996.Google Scholar
13. Kol'dyaev, V.I., IMEC Internal Report of 11th of March, 1998, (unpublished).Google Scholar
14. Lever, R.F., Bonnar, J.M., and Willoughby, F.W., J. Appl. Phys., vol.83, No.4, p.1988, 1998.Google Scholar
15. Gaworzewski, P., Krüger, D., Kurps, R., et.al., J.Appl.Phys., vol.75, No.12, p.7869, 1994.Google Scholar
16. Walle, C.G. Van de, and Neugebauer, J., Phys. Rev., (B), vol.52, No.20, p.R14320, 1995.Google Scholar
17. Maszada, W.P., Thompson, T., J.Appl.Phys., vol.72, No.9, p.4477, 1992.Google Scholar
18. Aziz, M.J., Nygren, E., Christie, W.H., Mater.Res.Soc. Symp. Proc., vol.36, p.101, 1985.Google Scholar
19. Subramanian, G., Jones, K.S., Law, M.E., Mat.Res.Soc.Symp., vol.610, p.10.1, 2000.Google Scholar
20. Park, H., Jones, K.S., Slinkman, J.A., and Law, M.E., J.Appl.Phys., vol.78, No.6, p.3664, 1995.Google Scholar