Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T10:49:46.909Z Has data issue: false hasContentIssue false

New Synthesis Route and Characterization of Siderite (FeCO3) and Coprecipitation of 99Tc

Published online by Cambridge University Press:  19 October 2011

Isabelle Llorens
Affiliation:
Isabelle.Llorens@subatech.in2p3.fr, Ecole des Mines de Nantes, Laboratoire Subatech, 4 rue Alfred Kastler, Site de la Chantrerie, Nantes, 44307, France, Metropolitan, +33251858151, +33251858152
Massoud Fattahi
Affiliation:
massoud.fattahi-vanani@subatech.in2p3.fr, Ecole des Mines de Nantes, Laboratoire Subatech, 4 rue Alfred Kastler, Site de la Chantrerie, Nantes, 44307, France, Metropolitan
Bernd Grambow
Affiliation:
Bernd.Granmbow@subatech.in2p3.fr, Ecole des Mines de Nantes, laboratoire Subatech, 4 rue Alfred Kastler, Site de la Chantrerie, Nantes, 44307, France, Metropolitan
Get access

Abstract

Technetium-99 is a long-lived product of nuclear fission. In the ground-waters of European disposal sites Tc is expected to be in the tetravalent state since the geochemical conditions are reducing due to the presence of redox couples such as Fe(II)/Fe(III), and the presence of reducing minerals such as pyrite and siderite (FeCO3). Siderite is expected to be formed as well as container corrosion product. Experiments of coprecipitation of Fe2+ and Tc(IV) were conducted in the laboratory under an inert atmosphere at room temperature. High resolution transmission electron microscopy shows that the coprecipitate is around 3 nm sized particles. Analytical electron microscopy indicates that the precipitate contains 30 atom % of Tc and 70 atom % Fe. The Tc was homogeneously distributed. Selected Area Electron Diffraction doesn't reveal the formation of siderite, which suggests that the presence of technetium in high concentration inhibit the formation of this phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Darab, J. G. and Smith, P. A., Chemical Material 8, 10041021 (1996).Google Scholar
2. Allard, B., Kigatsi, H. and Torstenfeld, B., Radiochemical and Radioanalytical Letters 37, 223230 (1979).Google Scholar
3. Cui, D. and Eriksen, T. E., Environmental Science of Technology 30, 22632269 (1996).Google Scholar
4. Cui, D. and Eriksen, T. E., Environmental Science of Technology 30, 22592262 (1996).Google Scholar
5. Pepper, S. E., Bunker, D. J., Bryan, N. D., Livens, F. R., Charnock, J. M., Pattrick, R. A. D. and Collison, D., Journal of Colloid and Interface Science 268, 408412 (2003).Google Scholar
6. Vandergraaf, T. T., Ticknor, K. V. and George, I. M., “Reaction between Technetium in solution and Iron-containing Mineral Under Oxic and Anoxic Conditions.,” (A. C. Society, 1984) pp.2543.Google Scholar
7. Walton, F. B., Paquette, J., M., R. J.P. and Lawrence, W. E., Nuclear and Chemical Waste Management 6, 121126 (1986).Google Scholar
8. Wharton, M. J., Atkins, B., Charnock, J. M., Livens, F. R., Pattrick, R. A. D. and Collison, D., Applied Geochemistry 15, 347354 (2000).Google Scholar
9. Haines, R. I., Owen, D. G. and Vandergraaf, T. T., Nuclear Journal of Canada 1, 3237 (1987).Google Scholar
10. Llorens, I., Fattahi, M., Deniard, P., Leone, P., Jobic, S. and Grambow, B., Materials Research Bulletin (accepted).Google Scholar
11. Drissi, S. H., Refait, P., Abdelmoula, M. and Genin, J. M. R., Corrosion Science 37, 2025-2041 (1995).Google Scholar
12. Eriksen, T. E., Ndalanba, P., Bruno, J. and Caceci, M., Radiochimica Acta 58/59, 67-70 (1992).Google Scholar