Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T12:26:45.589Z Has data issue: false hasContentIssue false

Non-Gaussian 1 / f Noise and Conductance Fluctuations in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  21 February 2011

C. E. Parman
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455 USA
N. E. Israeloff
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455 USA
J. Kakalios
Affiliation:
The University of Minnesota, School of Physics and Astronomy, Minneapolis, MN 55455 USA
Get access

Abstract

Statistical analysis of the 1/f noise power spectrum of co-planar current fluctuations in n-type doped hydrogenated amorphous silicon (a-Si:H) find that the noise arises from a small number of correlated fluctuators. The noise power displays a complicated time dependence with the noise power changing in both magnitude and as a function of frequency. Spectral analysis of these noise power fluctuations display an approximate 1/f frequency dependence. These results are surprising given the effective volume (∼10-7 cm3) of the sample, and indicate that cooperative dynamics govern conductance fluctuations in a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weissman, M. B., Rev. Mod. Phys. 60, 537 (1988).Google Scholar
2. Dutta, P. and Horn, P. M., Rev. Mod. Phys. 53, 497 (1981).Google Scholar
3. Kogan, Sh. M., Sov. Phys. Usp. 28, 170 (1985).Google Scholar
4. Van der Ziel, A., Adv. in Elect, and Electron. Phys. 49, 225 (1979).CrossRefGoogle Scholar
5. Rogers, C. T. and Buhrman, R. A., Phys. Rev. Lett. 53, 1272 (1984).Google Scholar
6. Parman, C., Israeloff, N. and Kakalios, J., Phys. Rev. B 44, 8391 (1991).Google Scholar
7. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1976).Google Scholar
8. Parman, C.E., Israeloff, N. E. and Kakalios, J., Phys. Rev. B, to be published.Google Scholar
9. Restle, P. J., Weissman, M. B. and Black, R. D., J. Appl. Phys. 54, 5844 (1983);Google Scholar
Restie, P. J., Hamilton, R. J., Weissman, M. B. and Love, M. S., Phys. Rev. B 31, 2254 (1985).CrossRefGoogle Scholar
10. Israeloff, N. E., Alers, G. B. and Weissman, M. B., Phys. Rev. B 44, 12613 (1991).Google Scholar
11. Parman, C.E., Israeloff, N. E. and Kakalios, J., to be published.Google Scholar
12. Parman, C. and Kakalios, J., Phys. Rev. Lett. 67, 2529 (1991).Google Scholar
13. Street, R. A., Phys. Rev. Lett. 49, 1187 (1982);Google Scholar
Street, R. A., Kakalios, J. and Hack, M., Phys. Rev. B 38, 5663 (1988).Google Scholar
14. Monroe, D., Phys. Rev. Lett. 54, 146 (1985).Google Scholar
15. Reimer, J. A., Vaughan, R. W. and Knights, J. C., Phys. Rev. Lett. 44, 193 (1980).CrossRefGoogle Scholar
16. Kakalios, J., Street, R. A. and Jackson, W. B., Phys. Rev. Lett. 59, 1037 (1987).Google Scholar
17. Palmer, R. G., Stein, D. L., Abrahams, E. and Anderson, P. W., Phys. Rev. Lett. 53, 958 (1984).Google Scholar
18. Fedders, P. A., Fu, Y. and Drabold, D. A., Phys. Rev. Lett. 68, 1888 (1992).Google Scholar