Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T22:08:43.519Z Has data issue: false hasContentIssue false

Nonlinear Optical Properties of Organic Photorefractive Polymers

Published online by Cambridge University Press:  15 February 2011

W. E. Moerner
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
C. A. Walsh
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
S. M. Silence
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
R. J. Twieg
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
T. J. Matray
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
J. C. Scott
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
V. Y. Lee
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
R. D. Miller
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
F. Hache
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
D. M. Burland
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
G. C. Bjorklund
Affiliation:
IBM Research Division, Almaden Research Center, San Jose, California 95120-6099
Get access

Abstract

This paper describes the photorefractive properties of a new and growing class of materials exhibiting the effect, doped nonlinear organic polymers. We show directly using a PMMA-based copolymer with a pendant nonlinear nitroaminotolane chromophore doped with a charge transport agent that the presence of photoconductivity and optical nonlinearity are only necessary, but not sufficient to guarantee that a given materials system will yield measurable photorefractive gratings, rather than gratings due to some other process such as photochromism. To prove photorefractivity unequivocally, direct measurement of the spatial phase shift between the intensity pattern and the index modulation is best, and we summarize a convenient way to do this using two-beam coupling and sample translation. In addition to the photorefractive epoxy materials such as bisA-NPDA:DEH reported earlier (Phys. Rev. Lett. 66, 1846 (1991); Proc. SPIE1560, 278 (1992)), a new PMMA-based copolymer with pendant p-nitroaniline chromophores doped with DEH also shows photorefractive grating formation, with writing speed 100 times higher than that for the epoxy material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, F. S., J. Appl. Phys. 38. 3418 (1967).Google Scholar
2. Valley, G. C., Klein, M. B., Mullen, R. A., Rytz, D., and Wechsler, B., Ann. Rev. Mater. Sci. 18, 165 (1988) and references therein.Google Scholar
3. Eichler, H. J., Günter, P., and Pohl, D. W., Laser-Induced Dynamic Gratings, Springer Series in Optical Sciences, Vol.50 (Springer, Berlin, Heidelberg, 1986).Google Scholar
4. Feinberg, J., Phys. Today 41, 46 (1988).Google Scholar
5. Cronin-Golomb, M. and Yariv, A.,.. Appl. Phys. 57, 4906 (1985).Google Scholar
6.. Anderson, D. Z., Lininger, D. M., and Feinberg, J., Opt. Lett 12, 123 (1987).Google Scholar
7. Anderson, D. Z. and Feinberg, J., IEEE. J. Quant. Elec. 25, 635 (1989).Google Scholar
8. Feinberg, J., Opt. Lett. 7, 486 (1982).CrossRefGoogle Scholar
9. Feinberg, J., in Optical Phase Contjugalion, Fisher, R. A., ed. (Academic, New York, 1983), pp. 417443.CrossRefGoogle Scholar
10. Huignard, J. P. and Marrakchi, A., Opt. Common. 38, 249 (1981).Google Scholar
11. Ducharme, S., Scott, J. C., Twieg, R. J., and Moerner, W. E., Postdcadline Paper, OSA Annual Meeting, Boston, MA, November 5–9, 1990.Google Scholar
12. Sutter, K., Hullinger, J., and Günter, P., Sol. St. Commun. 74, 867 (1990).Google Scholar
13. Sutter, K. and Günter, P., J. Opt. Soc. Am. B 7, 2274 (1990).Google Scholar
14. Schildkraut, J. S., Appl. Phys. Lett. 58, 340 (1991).Google Scholar
15. Li, L., Lee, J. Y., Yang, Y., Kummar, J., and Tripathy, S. K., Appl. Phys. B 53, 279 (1991).Google Scholar
16. Ducharme, S.,.. Scott, J. C., Twieg, R. J., and Mocrner, W. E., Phys. Rev. Left. 66, 1846 (1991).Google Scholar
17. Eich, M., Reck, B., Yoon, D. Y., Willson, C. G., and Bjorklund, G. C., J. Appl. Phys. 66, 3241 (1989).Google Scholar
18. Moerner, W. E., Walsh, C., Scott, J. C., Ducharme, S., Burland, D. M., Bjorklund, G. C., and Twieg, R. J., Proc. Soc. Photo-Opt. Instrum. Engr. NI.O IV 1560, 278 (1991).Google Scholar
19. Scott, J. C., Pautmeier, L. Th., and Moerner, W. E., subm. to Opt. Soc. Ani. B (1992).Google Scholar
20. Sturmer, D. M. and Heseltine, D. W., in The Theory of the Photographic Process, 4th ed., James, T. H., ed. (Macmillan, New York, 1977), pp. 194234.Google Scholar
21. Walsh, C. A. and Moerner, W. E., J. Opt. Soc. Am. B (to appear, Sept. 1992).Google Scholar
22. Scott, J. C., et al., following paper.Google Scholar
23. Partovi, A., Kost, A., Garmire, E. M., Valley, G. C., and Klein, M. B., Appl. Phys. Lett. 56, 1089 (1990).Google Scholar
24. Gelsen, O. M., Bradley, D. D. C., Murata, H., Tsutsti, T., Saito, S., Röhe, J., and Wegner, G., Synth. Met. 41, 875 (1991).Google Scholar
25. See for examples Brown, G. H., ed., Photochromism, (Techniques of Chemistry, vol III) (Wiley-lnterscience, New York, 1971).Google Scholar
26. Kondilenko, V., Markov, V., Odulov, S., and Soskin, M., Optica Acta 26, 239 (1979).CrossRefGoogle Scholar
27. Gehrtz, M., Pinsl, J., and Bräuchle, C., Appl. Phys. B 43, 61 (1987).Google Scholar
28. Zha, M. Z., Amrhein, P., and Günter, P., IFELE. J. Quant. Elec. 26, 788 (1990).CrossRefGoogle Scholar
29. Kogelnik, H., Bell Syst. Tech. J. 48, 2909 (1969).Google Scholar
30. Valley, G. C. and Lam, J. F., in Photorefractive Materials and their Applications I, Günter, P. and Huignard, J.-P., eds., (Springer Verlag, Berlin 1988), p. 84.Google Scholar
31. Silence, S. M., Walsh, C. A., Scott, J. C., Matray, T. J., Twieg, R. J., Hache, F., Bjorklund, G. C., and Moerner, W. E., subm. to Opt. Lett. (1992).Google Scholar
32. Bashaw, M. C., Ma, T.-P., Barker, R. C., Mroczkowski, S., andt Dube, R. R., Phys. Rev. B 42, 5641 (1990).Google Scholar
33. Pope, M. and Swenberg, C. E., Electironic Processes in Organic Crystals, (Clarendon, Oxford, 1982), p. 748 cf.Google Scholar