Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:48:27.980Z Has data issue: false hasContentIssue false

Nonlinear Two-Photon Photocurrent Spectroscopy of CdS Nanosheets

Published online by Cambridge University Press:  12 July 2012

Parveen Kumar
Affiliation:
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011, USA
Aaron Wade
Affiliation:
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011, USA
Leigh Morris Smith
Affiliation:
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011, USA
Howard E Jackson
Affiliation:
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011, USA
Jan M Yarrison-Rice
Affiliation:
Department of Physics, Miami University, Oxford, Ohio 45056, USA
Young-Jin Choi
Affiliation:
Nano Materials Research Center, Korea Institute of Science and Technology, Seoul 130-650, Korea
Jae-Gwan Park
Affiliation:
Nano Materials Research Center, Korea Institute of Science and Technology, Seoul 130-650, Korea
Get access

Abstract

We study the photocurrent from photoexcited charged carriers excited with lasers of energy both above and below the energy gap in CdS nanostructures. We observe non-linear photocurrents in CdS nanosheet devices in the metal-semiconductor-metal configuration with Schottky contacts for sub-band gap excitations. Analysis of two-photon absorption dominated photocurrents reveals a nonlinear coefficient of β = 2 cm/GW for these nanosheet devices, which is comparable to those of bulk CdS. We demonstrate the use of the photocurrent polarization measurements to determine the orientation of atoms in the nanosheet.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zheng, G. F., Lu, W., Jin, S. and Lieber, C. M., Adv Mater 16, 1890 (2004).CrossRefGoogle Scholar
Huang, Y., Duan, X. F. and Lieber, C. M., Small 1, 142 (2005).CrossRefGoogle Scholar
Law, M., Kind, H., Messer, B., Kim, F. and Yang, P. D., Angew. Chem., Int. Ed. Engl. 41, 2405 (2002).3.0.CO;2-3>CrossRefGoogle Scholar
Wang, J. F., Gudiksen, M. S., Duan, X. F., Cui, Y. and Lieber, C. M., Science 293, 1455 (2001).CrossRefGoogle Scholar
Gradecak, S., Qian, F., Li, Y., Park, H. G. and Lieber, C. M., Appl Phys Lett 87, 173111 (2005)CrossRefGoogle Scholar
Wei, L., Jie, X., Timko, B. P., Yue, W. and Lieber, C. M., Proceedings of the National Academy of Sciences of the United States of America 102, 10046 (2005).Google Scholar
Sakaki, H., Japanese Journal of Applied Physics 19, L735 (1980).CrossRefGoogle Scholar
Jie, J. S., Zhang, W. J., Jiang, Y., Meng, X. M., Li, Y. Q. and Lee, S. T., Nano Letters 6, 1887 (2006).CrossRefGoogle Scholar
Feng, X. B. and Ji, W., Optics Express 17, 13140 (2009).CrossRefGoogle Scholar
Barrelet, C. J., Wu, Y., Bell, D. C. and Lieber, C. M., J. Am. Chem. Soc. 125, 11498 (2003).CrossRefGoogle Scholar
Kumar, P., Wade, A., Smith, L.M., Jackson, H.E., Yarrison-Rice, J.M., Choi, Y.-J., and Park, J.-G., Appl Phys Lett 98, 143102 (2011).CrossRefGoogle Scholar
Zhang, Z., Yao, K., Liu, Y., Jin, C, Liang, X., Chen, Q., Peng, L. M., Adv. Funct. Mater. 17, 2478 (2007)CrossRefGoogle Scholar
Gu, Y., Romankiewicz, J. P., David, J. K., Lensch, J. L. and Lauhon, L. J., Nano Letters 6, 948 (2006).CrossRefGoogle Scholar
Maharjan, K. Pemasiri, P. Kumar, A. Wade, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, A. Kogan, S. Paiman, Q. Gao, H. H. Tan, and Jagadish, C., Appl. Phys. Lett. 94, 193115 (2009).CrossRefGoogle Scholar
Gu, Y., Kwak, E. S., Lensch, J. L., Allen, J. E., Odom, T. W. and Lauhon, L. J., Applied Physics Letters 87, 043111 (2005).CrossRefGoogle Scholar
Hoang, T. B., Titova, L. V., Mishra, A., Smith, L. M., Jackson, H. E., Lee, K. Y., Rho, H., Yarrison-Rice, J. M., Choi, Y. J., Choi, K. J. and Park, J. G., Appl. Phys. Lett. 92, 143112 (2008).CrossRefGoogle Scholar
Rho, H., Lee, K. Y., Hoang, T. B., Titova, L. V., Mishra, A., Smith, L. M., Jackson, H. E., Yarrison-Rice, J. M., Choi, Y. J., Choi, K. J. and Park, J. G., Appl. Phys. Lett. 92, 013111 (2008).CrossRefGoogle Scholar
Cingolani, A., Ferrero, F., Minafra, A. and Trigiante, D., Nuovo Cimento B 4B, 217 (1971).CrossRefGoogle Scholar
Skovgaard, P. M. W., Mullane, R. J., Nikogosyan, D. N. and McInerney, J. G., Optics Communications 153, 78 (1998).CrossRefGoogle Scholar
Rumi, M., and Perry, J. W., Adv. Optics and Photonics 2, 451 (2010)CrossRefGoogle Scholar
Sheikbahae, M., Hutchings, D. C., Hagan, D. J. and Vanstryland, E. W., IEEE Journal of Quantum Electronics 27, 1296 (1991).CrossRefGoogle Scholar