Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T13:27:55.918Z Has data issue: false hasContentIssue false

A Novel Associative Polymer Network based on Cyclodextrin Inclusion with Tunable Rheological Properties

Published online by Cambridge University Press:  01 February 2011

Lin Fu
Affiliation:
lfu@princeton.edu, Princeton University, Chemical Engineering, Equad, Olden Street, Princeton, NJ, 08540, United States, 6092584582
Xuhong Guo
Affiliation:
xguo@princeton.edu, Princeton University, Chemical Engineering, Equad, Olden Street, Princeton, NJ, 08540, United States
Stephen Lincoln
Affiliation:
stephen.lincoln@adelaide.edu.au., University of Adelaide, School of Chemistry&Physics, Adelaide, SA, 5005, Australia
Robert K. Prud'homme
Affiliation:
prudhomm@princeton.edu, Princeton University, Chemical Engineering, Equad, Olden Street, Princeton, NJ, 08540, United States
Get access

Abstract

A novel associative polymer network with tunable rheological properties is developed based on cyclodextrin-hydrophobe inclusion. The network is formed from mixtures of two polyacrylic acid (PAA) backbone polymers, one with pendant cyclodextrin groups and one with pendant hydrophobic alkyl groups. The lifetime of the cyclodextrin-hydrophobe inclusion can be well controlled by the length of alkyl chains inserted into the cyclodextrins; also, the binary nature of cyclodextrin-hydrophobe inclusion prevents hydrophobes from forming non-stoichiometric multiple associations. This system can serve as a model associative polymer network to test associative polymers theories. Dynamic rheological properties of this mixture solution can be tuned by adding free cyclodextrins or sodium dodecylsulfate (SDS) to displace polymer to polymer associations. Dynamic moduli change three orders of magnitude from a gel state to a sol state. This polyelectrolyte system is also pH sensitive, salt sensitive and temperature sensitive. The phase behavior of this mixture solution is experimentally studied by light scattering measurements and rheology. The thermodynamics of the cyclodextrin-hydrophobe interaction is independently studied using isothermal titration calorimetry and surface plasmon resonance study.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cai, S. S., Liu, Y. C., Shu, X. Z. and Prestwich, G. D., Biomaterials, 26, 60546067 (2005).Google Scholar
2. Moss, J. A., Stokols, S., Hixon, M. S., Ashley, F. T., Chang, J. Y. and Janda, K. D., Biomacromolecules, 7, 10111016 (2006).Google Scholar
3. Tharmann, R., Claessens, M. and Bausch, A. R., Physical Review Letters, 98, (2007).Google Scholar
4. Tripathi, A., Tam, K. C. and McKinley, G. H., Macromolecules, 39, 19811999 (2006).Google Scholar
5. Kanagalingam, S., Ngan, C. F. and Duhamel, J., Macromolecules, 35, 85608570 (2002).Google Scholar
6. Rubinstein, M. and Semenov, A. N., Macromolecules, 31, 13731385 (1998).Google Scholar
7. Wang, T. K., Iliopoulos, I. and Audebert, R., Polym. Bull., 20, 577 (1988).Google Scholar
8. Guo, X. H., Abdala, A. A., May, B. L., Lincoln, S. F., Khan, S. A. and Prud'homme, R. K., Polymer, 47, 29762983 (2006).Google Scholar
9. Brown, S. E., Coates, J. H., Coghlan, D. R., Easton, C. J., Vaneyk, S. J. and Janowski, W., Aust J Chem, 46, 953 (1993).Google Scholar
10. Dobrynin, A. V., Macromolecules, 37, 38813893 (2004).Google Scholar
11. Tanaka, F., Physica A, 257, 245255 (1998).Google Scholar
12. Tanaka, F., Polymer Journal, 34, 479509 (2002).Google Scholar
13. Erukhimovich, I. Y. and Tamm, M. V., JETP Letters, 75, 150154 (2002).Google Scholar
14. Potemkin, I. I., Andreenko, S. A. and Khokhlov, A. R., Journal of Chemical Physics, 115, 48624872 (2001).Google Scholar
15. Rubinstein, M. and Semenov, A. N., Macromolecules, 31, 13861397 (1998).Google Scholar
16. Boothroyd, A. T., Rennie, A. R., Boothroyd, C. B. and Fetters, L. J., Physical Review Letters, 69, 426429 (1992).Google Scholar
17. Silberberc-Bouhnik, M., Ilyaladyzhinski, O. R., Mizrahi, S. and Cohenz, Y., Journal of Polymer Science: Part B. Polymer Physics, 33, 22692279 Google Scholar
18. Guo, X. H., Abdala, A. A., May, B. L., Lincoln, S. F., Khan, S. A. and Prud'homme, R. K., Macromolecules, 38, 30373040 (2005).Google Scholar
19. Panmai, S., Prud'homme, R. K. and Peiffer, D. G., Colloids and Surfaces a-Physicochemical and Engineering Aspects, 147, 315 (1999).Google Scholar
20. Park, S. Y., Rubner, M. F. and Mayes, A. M., Langmuir, 18, 96009604 (2002).Google Scholar
21. Losche, M., Schmitt, J., Decher, G., Bouwman, W. G. and Kjaer, K., Macromolecules, 31, 88938906 (1998).Google Scholar