Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:33:27.382Z Has data issue: false hasContentIssue false

A Novel Chemical Synthesis >1 μm2 Reduced Graphene Oxide Sheets

Published online by Cambridge University Press:  30 March 2012

Rebecca Isseroff*
Affiliation:
Lawrence High School, Cedarhurst, NY 11516 USA
Paul Masih Das
Affiliation:
Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, MD 21218 USA
Andrew Chen
Affiliation:
Lawrence High School, Cedarhurst, NY 11516 USA
Alexandra Tse
Affiliation:
Lawrence High School, Cedarhurst, NY 11516 USA
Sneha Chittabathini
Affiliation:
Lawrence High School, Cedarhurst, NY 11516 USA
Yimei Zhu
Affiliation:
Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven, NY 11719 USA
Vadim Pozin
Affiliation:
Stony Brook University, Department of Materials Science and Engineering, Stony Brook, NY 11794 USA.
Jonathan Sokolov
Affiliation:
Stony Brook University, Department of Materials Science and Engineering, Stony Brook, NY 11794 USA.
Miriam Rafailovich
Affiliation:
Stony Brook University, Department of Materials Science and Engineering, Stony Brook, NY 11794 USA.
*
*Correspondence to: Rebecca Isseroff (Email: rsisseroff@gmail.com)
Get access

Abstract

If graphene is to be incorporated into transistors, solar cells, and capacitors, a large-scale synthesis of graphene must be devised. This research developed an innovative, simple, and cost-efficient synthesis procedure, dispersing graphene oxide in an ethanol-water solvent and reducing slowly with sodium borohydride (NaBH4). Reducing graphene oxide in 75:25 and 50:50 H2O:ethanol solutions with 15 mmolar NaBH4 produced numerous single-layered reduced graphene oxide sheets >1 μm2, and sometimes even >2 μm2. The quality of these sheets was confirmed by Raman spectroscopy, XRD, TGA, TEM, ED, and HRTEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Barnard, A.S.; Snook, I.K. J. Chem. Phys. 2008, 128, 094707094713.Google Scholar
2 Katsnelson, M.I. Mats. Today 2007, 10, 2027.Google Scholar
3 Fasolino, A.; Los, J.H.; Katsnelson, M.I. Nature Mats. 2007, 6, 858861.Google Scholar
4 Kou, R.; Shao, Y.; Wang, D.; Engelhard, M.H.; Kwak, J.H.; Wang, J.; Viswanathan, V.V.; Wang, C.; Lin, Y.; Wang, Y.; Aksay, I.A.; Liu, J. Electrochem. Comm. 2009, 11, 954957.Google Scholar
5 Konishi, K.; Yoh, K. Physica E. 2009, 42, 27922795.Google Scholar
6 Oh, Y.; Eom, J.; Koo, H.C.; Han, S.H. Solid State Comm. 2010, 150, 19871990.Google Scholar
7 Moon, J.S.; Curtis, D.; Bui, S.; Marshall, T.; Wheeler, D.; Valles, I.; Kim, S.; Wang, E.; Weng, X.; Fanton, M. IEEE Elec. Device Lett. 2010, 31, 11931195.Google Scholar
8 Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.; Hong, B.H. Nature 2009, 457, 706710.Google Scholar
9 Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. J. Phys. Chem. 2008, 112, 81928195.Google Scholar
10 Bourlinos, A.B.; Gournis, D.; Petridis, D.; Szabo, T.; Szeri, A.; Dekany, I. Langmuir 2003, 19, 60506055.Google Scholar
11 Shin, H.; Kim, K.K.; Benayad, A.; Yoon, S.; Park, H.K.; Jung, I.; Jin, M.H.; Jeong, H.; Kim, J.M.; Choi, J.; Lee, Y.H. Adv. Funct. Mats. 2009, 19, 19871992.Google Scholar
12 Wang, G.; Shen, X.; Yao, J.; Park, J. Carbon 2009, 47, 20492053.Google Scholar
13 Yang, H.; Shan, C.; Li, F.; Han, D.; Zhang, Q.; Niu, L. Chem. Comm. 2009, 1, 38803882.Google Scholar
14 Hummers, W.S.; Offeman, R.E. Nat. Lead Comp. 1958, 1, 1339.Google Scholar
15 Liu, N.; Luo, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J. Adv. Funct. Mats. 2008, 18, 15181525.Google Scholar