Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T07:40:24.509Z Has data issue: false hasContentIssue false

A Novel In-Situ Nanoindentation Characterization of Phase Transforming Materials

Published online by Cambridge University Press:  27 February 2015

A. Alipour Skandani
Affiliation:
Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
R. Ctvrtlik
Affiliation:
Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Olomouc, Czech Republic.
M. Al-Haik
Affiliation:
Department of Engineering Mechanics, Virginia Tech, Blacksburg, VA 24061, USA.
Get access

Abstract

Materials with different allotropes can undergo one or more phase transformations based on the changes in the thermodynamic states. Each phase is stable in a certain temperature/pressure range and can possess different physical and mechanical properties compared to the other phases. The majority of material characterizations have been carried out for materials under equilibrium conditions where the material is stabilized in a certain phase and a lesser portion is devoted for onset of transformation. Alternatively, in situ measurements can be utilized to characterize materials while undergoing phase transformation. However, most of the in situ methods are aimed at measuring the physical properties such as dielectric constant, thermal/electrical conductivity and optical properties. Changes in material dimensions associated with phase transformation, makes direct measurement of the mechanical properties very challenging if not impossible. In this study a novel non-isothermal nanoindentation technique is introduced to directly measure the mechanical properties such as stiffness and creep compliance of a material at the phase transformation point. Single crystal ferroelectric triglycine sulfate (TGS) was synthetized and tested with this method using a temperature controlled nanoindentation instrument. The results reveal that the material, at the transformation point, exhibits structural instabilities such as negative stiffness and negative creep compliance which is in agreement with the findings of published works on the composites with ferroelectric inclusions.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Prasad, J. and Diaz, A. R., J. Mech. Design. 128, 1298 (2006).CrossRefGoogle Scholar
Mizuno, T., Toumiya, T. and Takasaki, M., Int. J. Jap. Soc. Mech. Eng. 46(3), 807812 (2003).Google Scholar
Lakes, R. S., Lee, T., Bersie, A. and Wang, Y. C., Nature. 410, 565567 (2001).CrossRefGoogle Scholar
Kashdan, L., Seepersad, C., Haberman, M. and Wilson, P. S., Rapid Prototyping J. 18(3), 194200 (2012).CrossRefGoogle Scholar
Sarlis, A. A., Pasala, S. M. A. D. T. R., Constantinou, M. A. M. C., Reinhorn, F. A. A. M., Nagarajaiah, M. A. S. and Taylor, D. P., J. Struct. Eng. 139, 11241133 (2013).CrossRefGoogle Scholar
Diamantini, M. C. and Kleinert, H., Physical review letters 82(2), 267270 (1999).CrossRefGoogle Scholar
Jaglinski, T., Frascone, P., Moore, B., Stone, D. S. and Lakes, R. S., Philosophical Magazine 2011, 42854303 (2006).CrossRefGoogle Scholar
Skandani, A. A., Boroujeni, A. Y. and Al-Haik, M., presented at the ASME 2013 Int. Mech. Eng. Cong. and Exp., San Diego, (2013).Google Scholar
Skandani, A. A., Boroujeni, A. Y., Kalhor, R., Case, S. W. and Al-Haik, M., Polymer Composites (2014).Google Scholar
Skandani, A. A., Masghouni, N. and Al-Haik, M., Superior Damping of Hybrid Carbon Fiber Composites Grafted by ZnO Nanorods. (Springer, New York, 2014).CrossRefGoogle Scholar
Skandani, A. A., Masghouni, N., Case, S., Leo, D. and Al-Haik, M., Applied Physics Letters 101(7), 073111 (2012).CrossRefGoogle Scholar
Kailer, A., Gogotsi, Y. G. and Nickel, K. G., Journal of Applied Physics 81(7), 30573063 (1997).CrossRefGoogle Scholar
Kulikovsky, V., Vorlíček, V., Boháč, P., Stranyánek, M., Čtvrtlík, R. and Kurdyumov, A., Thin Solid Films 516(16), 53685375 (2008).CrossRefGoogle Scholar
Suresh, S., Nat Mater 5(4), 253254 (2006).CrossRefGoogle Scholar
Shen, L., Cheong, W. C. D., Foo, Y. L. and Chen, Z., Mater. Sci. Eng. A, 532(0), 505510 (2012).CrossRefGoogle Scholar
Everitt, N. M., Davies, M. I. and Smith, J. F..Google Scholar
Ctvrtlik, R., Al-Haik, M. S. and Kulikovsky, V., Journal of Materials Science (2014).Google Scholar
Cizman, A., Antropova, T., Anfimova, I., Drozdova, I., Rysiakiewicz-Pasek, E., Radojewska, E. B. and Poprawski, R., Size-driven ferroelectric-paraelectric phase transition in TGS nanocomposites. (2013).Google ScholarPubMed
Hoshino, S., Mitsui, T., Jona, F. and Pepinsky, R., Physical Review 107(5), 12551258 (1957).CrossRefGoogle Scholar
Lal, R. B. and Batra, A. K., Ferroelectrics 142(1), 5182 (1993).CrossRefGoogle Scholar
Iwao, S. and Sadao, H., Japanese Journal of Applied Physics 1(5), 249 (1962).Google Scholar
Deguchi, K. and Nakamura, E., Physics Letters A 60(4), 351352 (1977).CrossRefGoogle Scholar
Matthias, B. T., Miller, C. E. and Remeika, J. P., physical review 104, 849850 (1956).CrossRefGoogle Scholar
Andriyevsky, B., Esser, N., Patryn, A., Cobet, C., Ciepluch-Trojanek, W. and Romanyukc, M., Physica B 373, 328333 (2006).CrossRefGoogle Scholar
Deguchi, K. and Nakamura, E., Phys. Let. 60A, 351352 (1977).CrossRefGoogle Scholar
Alexandru, H. V. and Berbecaru, C., Cryst. Rex Technol. 30(3), 307315 (1995).CrossRefGoogle Scholar
Skandani, A. A., Ctvrtlik, R. and Al-Haik, M., Appl. Phys. Let. 105(8), - (2014).Google Scholar
Oliver, W. C. and Pharr, G. M., J. Mat. Research 7, 15641583 (1992).CrossRefGoogle Scholar
Doerner, M. F. and Nix, W. D., J. Mat. Research 1(04), 601609 (1986).CrossRefGoogle Scholar