Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:51:48.005Z Has data issue: false hasContentIssue false

Novel Model for the Optical Function: Application to Hexagonal Gan

Published online by Cambridge University Press:  21 March 2011

Y. Chan
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
Aleksandra B. Djurišić
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
E. Herbert Li
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
Get access

Abstract

In this work we propose an analytical expression for the complex dielectric function that includes both discrete and continuum exciton effects. The model is based on the work of Elliott and the proposed model has been applied to modeling the experimental data for the hexagonal GaN. We have obtained good agreement with the experimental data. The model assumes Lorentzian broadening in order to obtain dielectric function equations in analytically closed form. We show that Lorentzian broadened dielectric function decays more slowly than the experimental data for hexagonal GaN at the low energy side. This indicates that the broadening of the absorption edge in GaN is not purely Lorentzian. The agreement with the experimental data can be improved using adjustable broadening modification.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akasaki, I. and Amano, H., J. Electrochem. Soc. 141, 2266 (1994).Google Scholar
2. Nakamura, S. and Fasol, G., The blue laser diode: GaN based light emitters and lasers, Springer, Berlin, 1997.Google Scholar
3. Benedict, L. X. and Shirley, E. L., Phys. Rev. B 59, 5441 (1999).Google Scholar
4. Elliott, R. J., Phys. Rev. 108, 1384 (1957).Google Scholar
5. Holden, T., Ram, P., Pollak, F. H., Freeouf, J. L., Yang, B. X., and Tamargo, M. C., Phys. Rev. B 56, 4037 (1997).Google Scholar
6. Kim, C. C. and Sivananthan, S., Phys. Rev. B 53, 1475 (1996).Google Scholar
7. Whetkamp, T., Wilmers, K., Esser, N., Richer, W., Ambacher, O., Angerer, H., Jungk, G., Johnson, R. L., and Cardona, M., Thin Solid Films 313–314, 75 (1998); R. Goldhahn, S. Shokhovets, J. Scheiner, G. Gobsch, T. S. Cheng, C. T. Foxon, U. Kaiser, G. D. Kipshidze, and Wo. Richter, phys. Stat. Sol. (a) 177, 107 (2000), R. Goldhahn, private communication. 8. J. L. P. Hughes, J. Wang, and J. Sipe, Phys. Rev. B 55, 13630 (1997).Google Scholar
9. Djurišić, Aleksandra B. and Li, E.H., Appl. Phys Rev. 89, 273 (2001).Google Scholar
10. Visawanath, A. K., Wang, J., Sipe, J., Phys Rev. B 55, 13630 (1997).Google Scholar
11. Fischer, A. J., Shan, W., Park, G. H., Song, J. J., Kim, D. S., Yee, D. S., Horning, R., and Golgenberg, B., Phys Rev. B 56, 1077 (1997).Google Scholar
12. Li, C. F., Huang, Y. S., Malikova, L., and Pollak, F. H., Phys. Rev. B. 55, 9251 (1997).Google Scholar
13. Toyozawa, Y., Prog. Theor. Phys. 20, 53 (1997).Google Scholar
14. He, X. F., J. Opt. Soc. Am. B 14, 17 (1997).Google Scholar