Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T13:11:52.919Z Has data issue: false hasContentIssue false

Nucleation and Growth Model for Metal-On-Fcc(100) Metal Deposition

Published online by Cambridge University Press:  15 February 2011

M. C. Bartelt
Affiliation:
Institute for Physical Research & Technology
J. W. Evans
Affiliation:
Department of Mathematics and Ames Laboratory”, Iowa State University, Ames, Iowa 50011
Get access

Abstract

We present results of Monte Carlo simulations of irreversible diffusion-mediated nucleation and growth of square islands during deposition. This model mimics metal-on-fcc(100) metal epitaxy at lower temperatures. Our analysis focuses on the scaling of the island size and separation distributions, and their evolution with coverage. The depletion in the density of nearby island pairs is shown to produce a “Henzler ring” structure in the diffraction intensity profile.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mo, Y.W., Kleiner, J., Webb, M.B. and Lagally, M.G., Phys. Rev. Lett. 66 1998 (1991).Google Scholar
[2] Ernst, H.–J., Fabre, F. and Lapujoulade, J., Phys. Rev. B 46 1929 (1992); J.A.Stroscio, D.T.Pierce and R.A.Dragoset, Bull. Am. Phys. Soc. 38, 341 (1993), and submitted; G.Gtinther, E.Kopatzki and R.J.Behm, in preparation.Google Scholar
[3] Voter, A.F., SPIE 821 214 (1987).Google Scholar
[4] Kopatzki, E., Günther, S., Nichtl-Pecher, W. and Behm, R. J., Surface Sci. 284 154 (1993).Google Scholar
[5] Bartelt, M.C. and Evans, J.W., Surface Sci., (Proc. US-Japan Mtg. on Surf. Char., 1993).Google Scholar
[6] Haider, N., Wilby, M.R., and Vvedensky, D.D., MRS Proc.: Vol.280, Boston (1992).Google Scholar
[7] Bartelt, M.C. and Evans, J.W., Phys. Rev. B 46 12675 (1992); M.C.Bartelt, M.C.Tringides and J.W.Evans, MRS Proc.: Vol.280, Boston (1992); Phys. Rev. B47, 15 May (1993); A.Pimpinelli, J.Villain and D.E.Wolf, Phys. Rev. Lett. 69 985 (1992); S.V.Ghaisas and S.Das Sarma, Phys. Rev. B46 7308 (1992).CrossRefGoogle Scholar
[8] Family, F. and Meakin, P., Phys. Rev. Lett. 61 428 (1988).Google Scholar
[9] Stauffer, D. and Aharony, A., Intro. to Percolation Theory, (Taylor & Francis, 1992).Google Scholar
[10] Venables, J.A., Philo. Mag. 27 697 (1973).Google Scholar
[11] Evans, J.W. and Sanders, D.E., J. Vac. Soc. Technol. A 6 726 (1988); D.E.Sanders and J.W.Evans, Phys. Rev. A38 4186 (1988); S.R.Anderson and F.Family, Phys. Rev. A38 4198 (1988); J.W.Evans, J. Phys. A23 L197 (1990).Google Scholar
[12] Evans, J.W. and Bartelt, M.C., Surface Sci. Lett. 284 LA37 (1993).Google Scholar
[13] Routledge, K.J. and Stowell, M.J., Thin Solid Films 6 407 (1970).CrossRefGoogle Scholar
[14] Hahn, P., Clabes, J. and Henzler, M., J. Appl. Phys. 51 2079 (1980).Google Scholar