Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-21T09:18:33.288Z Has data issue: false hasContentIssue false

On the Kinetics of Oxygen Clustering and Thermal Donor Formation in Czochralski Silicon

Published online by Cambridge University Press:  28 February 2011

T. Y. Tan
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
R. Kleinhenz
Affiliation:
IBM General Technology Division, Hopewell Junction, NY 12533
C. P. Schneider
Affiliation:
IBM General Technology Division, Hopewell Junction, NY 12533
Get access

Abstract

We report the results of an experiment of annealing Czochralski silicon at 450°C for up to 500 hrs. Concentrations of oxygen atoms (Ci) and thermal donors (TD) have both been monitored. Analyses of the oxygen concentration data yielded the apparent interpretation that the overall kinetics is dominated by the formation of small clusters (dimers and trimers). This cannot account for TD formation, since they are supposed to be larger clusters. On the other hand, analyses of existing TD kinetic models did not yield calculated Ci values to satisfactorily account for the present Ci data. We believe that a satisfactory TD model is not yet available.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fuller, C. S., Ditzenberger, J. A., Hannay, N. B. and Buehler, E., Phys. Rev. 96, 833 (1954); Acta. Met. 3, 97 (1955).Google Scholar
2. Kaiser, W., Frisch, H. L. and Reiss, H., Phys. Rev. 112, 1546 (1958).CrossRefGoogle Scholar
3. Helmreich, D. and Sirtl, E., in Semiconductor Silicon 1977 eds. Huff, H. R. and Sirtl, E. (The Electrochem. Soc., Princeton, NJ, 1977) p. 626.Google Scholar
4. Bean, A. R. and Newman, R. C., J. Phys. Chem. Solids 33, 255 (1972).Google Scholar
5. Gosele, U. and Tan, T. Y., Appl. Phys. A 28, 79 (1982).Google Scholar
6. Stavola, M. and Snyder, L. C., in Defects in Silicon eds. Bullis, W. M. and Kimerling, L. C. (The Electromchem. Soc., Pennington, NJ, 1983) p. 61.Google Scholar
7. Oehrlein, G. S., J. Appl. Phys. 54, 5453 (1983).Google Scholar
8. Pajot, B., Compain, H., Lerouille, J. and Clerjaud, B., Physica 117B, 110 (1983).Google Scholar
9. Newman, R. C., Oates, A. S. and Livingston, F. M., J. Phys. C. 16, L667 (1983).Google Scholar
10. Keller, W. W., J. Appl. Phys. 55, 3471 (1984).CrossRefGoogle Scholar
11. Henry, P. M., Former, J. W. and Meese, J. M., Appl. Phys. Lett. 45, 454 (1984).CrossRefGoogle Scholar
12. Ourmazd, A., Schröter, W. and Bourret, A., J. Appl. Phys. 56, 1670 (1984).Google Scholar
13. Newman, R. C., J. Phys. C (1985) submitted; and this proceeding.Google Scholar
14. Bourret, A., in Proc. 13th Int. Conf. on Defects in Semiconductors, eds. Kimerling, L. C. and Parsey, J. M. Jr. (The Met. Soc. of AIME, Warrendale, PA, 1985) p. 129.Google Scholar
15. Öder, R. and Wagner, P., in Defects in Semiconductors II eds. Mahajan, S. and Corbett, J. W. (North-Holland, NY, 1983) p. 171.Google Scholar
16. Lee, S. T. and Nichols, D., Appl. Phys. Lett. 47, 1001 (1985).CrossRefGoogle Scholar
17. Gaworzewski, P. and Ritter, G., Phys. Stat. Sol. (a) 67, 511 (1981).Google Scholar
18. Hahn, S., this proceeding.Google Scholar
19. Bergholz, W., Hutchison, J. L. and Pirouz, P., J. Appl. Phys. 58, 3419 (1985).CrossRefGoogle Scholar