Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T18:04:29.932Z Has data issue: false hasContentIssue false

On the Relationship between Calculations and Measurements of the Free Volume of Grain Boundaries

Published online by Cambridge University Press:  15 February 2011

S. C. Mehta
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, NJ-07030.
D. A. Smith
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, NJ-07030.
Get access

Abstract

Grain boundary free volume, simply defined as the difference between the volume of a bicrystal and that of a single crystal containing an equal number of atoms, provides a good measure of average grain boundary coordination. Free volume is useful because (a) computer calculations suggest that the grain boundary free volume scales with the grain boundary energy and (b) experimental measurement of free volume may be relatively easier and more direct than that of grain boundary energy. The objective of this paper is to compare the predictions from computer models of grain boundary free volume with experimental measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Merkle, K. L. and Wolf, D., MRS Bull., 42, Sept. 1990.Google Scholar
[2] Weins, M. J., Gleiter, H. and Chalmers, B., J. Appl. Phys. 42, 2639, 1971.Google Scholar
[3] Frost, H. J., Ashby, M. F. and Spaepen, F., Mater. Res. lab. Tech. Report, Div. of Appl. Sci., Harvard University, Cambridge, June, 1982.Google Scholar
[4] Pond, R. C., Smith, D. A. and Vitek, V., Acta Metall, 27, 235, 1979.CrossRefGoogle Scholar
[5] Pond, R. C., Smith, D. A. and Vitek, V., Acta Metall., 25, 475, 1977.Google Scholar
[6] Chen, S. P. Srolovitz, D. J. and Voter, A. F., Mater, J.. Res. 4, 62, 1989.Google Scholar
[7] Wolf, D., Acta Metall. 37(7), 1983, 1989.CrossRefGoogle Scholar
[8] Wolf, D., Acta Metall. 37(10), 2823, 1989.Google Scholar
[9] Wolf, D., Acta Metall. 38(5), 791, 1990.CrossRefGoogle Scholar
[10] Wolf, D., Phil. Mag. A 62(4), 447, 1990.Google Scholar
[11] Sutton, A. P., Phil. Mag. A 62(4), 793, 1991.CrossRefGoogle Scholar
[12] Frost, H. J., Scripta Metall. 14, 1051, 1980.Google Scholar
[13] Wolf, D., J. Appl. Phys. 69(1), 185, 1991.CrossRefGoogle Scholar
[16] Merkle, K. L. and Smith, D. J., Ultramicroscopy 22, 57, 1987.Google Scholar
[17] Wolf, D., J. Mater. Res. 5(8), 1708, 1990.Google Scholar
[18] Pond, R. C., J. Microscopy 116(1), 105, 1979.Google Scholar
[19] Ecob, C. and Stobbs, W. M., J. Microscopy, 116, 275, 1983.CrossRefGoogle Scholar
[20] Das Chowdhury, K., Carpenter, R. W. and Kim, M. J., J. Microscopy: The Key Research Tool, 61, March 1992.Google Scholar
[21] Matthews, J. W. and Stobbs, W. M., Phil. Mag. A 36, 373, 1977.Google Scholar
[22] Stobbs, W. M., Wood, G. J. and Smith, D. J., Ultramicroscopy 14, 145, 1984.Google Scholar
[23] Wood, G. J., Stobbs, W. M. and Smith, D. J., Phil. Mag. A 50(3), 375, 1984.CrossRefGoogle Scholar
[24] Merkle, K. L., Ultramicroscopy 40, 281, 1992.Google Scholar
[25] Krakow, W., Wetzel, J. T. and Smith, D. A., Phil. Mag. A 53, 739, 1986.Google Scholar
[26] Cosandey, F., Chan, S. W. and Stadehnann, P., Coll. de phys. 51, Cl109, 1990.Google Scholar
[27] Hasson, G., Lecoze, J. and Lesbats, P., Compt. rend. (Pans), C271, 1314, 1971.Google Scholar
[28] Rene’ Rasmussen, D. and Barry Carter, C., Ultramicroscopy 32, 337, 1990.Google Scholar