No CrossRef data available.
Article contents
Optical and Electrical Properties of CdTe Nanocrystal Quantum Dots Passivated in Amorphous TiO2 Thin Film Matrix
Published online by Cambridge University Press: 09 August 2011
Abstract
CdTe nanocrystal quantum dots sequestered in TiO2 thin film matrix have been synthesized by r.f. sputtering from a composite CdTe/TiO2 target. CdTe nanocrystal formation is nucleation controlled as their size (11-25 nm), dispersion and volume fraction (0.065-0.2) increases with film thickness, substrate temperature (100°C) and thermal treatment. The optical band gap derived from the onset of absorption coefficient showed blue shifts concurrent with the CdTe nanocrystal size reduction due to quantum size effects. These shifts, not consistent with theoretical models based on strong or weak confinement regimes, are explained on the basis of anisotropic growth and formation of CdTe nanocrystal clusters. TiO2, in addition to being an ideal passivator and providing a barrier for carrier confinement to observe quantum effects, shows O2 vacancy dependent conductivity modulation. Electrical conductivity variation with CdTe nanocrystal size and density is attributed to electrical coupling and tunneling behavior of carriers between CdTe nanocrystallites.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999