Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T19:53:59.992Z Has data issue: false hasContentIssue false

Optical Properties and Structure of Microcrystalline Silicon

Published online by Cambridge University Press:  21 February 2011

Hien V. Nguyen
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Ilsin An
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Youming Li
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
C.R. Wronski
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
R.W. Collins
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

The optical properties of thin film microcrystalline silicon (μc-Si:H) prepared by plasma-enhanced chemical vapor deposition (PECVD) have been studied by real time spectroscopie ellipsometry in the nucleation regime as isolated crystalline particles increase in size. A simple geometric model of nucleation allows us to remove the dominant effect of voids and extract the dielectric functions of the crystallites themselves. We find that the results can be understood in terms of a classical size effect whereby limitations on the electron mean free path by scattering at crystallite surfaces control the absorption onset from 2.0 to 3.0 eV. Finally, we describe how well-ordered, continuous 15 Å c-Si films can be prepared on metal substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a recent collection of papers see: Mater. Res. Soc. Symp. Proc. 164 (1990).Google Scholar
2. Guha, S., Yang, J., Nath, P., and Hack, M., Appl. Phys. Lett. 49, 218 (1986).Google Scholar
3. Collins, R.W., Biter, W.J., Clark, A.H., and Windischmann, H., Thin Solid Films, 122, 127 (1985)Google Scholar
4. Aspnes, D.E., Proc. Soc. Photo-Opt. Inst. Eng. 276, 188 (1981).Google Scholar
5. Collins, R.W., Windischmann, H., Cávese, J.M., and Gonzalez-Hernandez, J., J. Appl. Phys. 58, 954 (1985).Google Scholar
6. Logothetidis, S., J. Appl. Phys. 65, 2416 (1989).Google Scholar
7. An, I. and Collins, R.W., Rev. Sci. Instrum. 62, 1904 (1991).Google Scholar
8. Aoki, T. and Adachi, S., J. Appl. Phys. 69, 1574 (1991).CrossRefGoogle Scholar
9. Lautenschlager, P., Garriga, M., Vina, L. and Cardona, M., Phys. Rev. B, 36, 4821 (1987).Google Scholar
10. Arwin, H. and Aspnes, D.E., Thin Solid Films, 113 (1984).Google Scholar
11. Kreibig, U. and Fragstein, C.v., Z. Phys. 224, 307 (1969).Google Scholar
12. Chelikowsky, J.R. and Cohen, M.L., Phys. Rev. B, 14, 556 (1976).Google Scholar