Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T16:42:50.899Z Has data issue: false hasContentIssue false

Optical Spectroscopy and Composition of InGaN

Published online by Cambridge University Press:  03 September 2012

K.P. O'Donnell
Affiliation:
Dept. of Physics and Applied Physics, Strathclyde University, Glasgow, G4 0NG, U.K.
R.W. Martin
Affiliation:
Dept. of Physics and Applied Physics, Strathclyde University, Glasgow, G4 0NG, U.K.
M.E. White
Affiliation:
Dept. of Physics and Applied Physics, Strathclyde University, Glasgow, G4 0NG, U.K.
K. Jacobs
Affiliation:
Department of Information Technology, University of Ghent, Ghent 7500, Belgium
W. Van der Stricht
Affiliation:
Department of Information Technology, University of Ghent, Ghent 7500, Belgium
P. Demeester
Affiliation:
Department of Information Technology, University of Ghent, Ghent 7500, Belgium
A. Vantomme
Affiliation:
Inst. Kern- en Stralingsfysica, Univ. of Leuven, B-3001 Leuven, Belgium
M.F. Wu
Affiliation:
Inst. Kern- en Stralingsfysica, Univ. of Leuven, B-3001 Leuven, Belgium
J.F.W. Mosselmans
Affiliation:
CLRC, Daresbury Laboratories, Warrington WA4 4AD, England, U.K.
Get access

Abstract

Commercial light emitting devices (LEDs) containing InGaN layers offer unrivalled performance in the violet (∼400 nm), blue (∼450 nm) and green (∼520 nm) spectral regions. Nichia Chemicals Company has also produced amber InGaN LEDs with peak output near 590 nm. Here, we predict, on purely theoretical grounds, a surprisingly high limiting value of 1020 nm (peak) for InGaN intrinsic emission. We partly confirm this prediction by spectroscopic measurements of samples with photoluminescence (PL) peaks between 370 nm and 980 nm. In addition, we have measured the indium content of a range of light-emitting layers, using Rutherford Backscattering Spectrometry (RBS), Extended X-Ray Absorption Fine Structure (EXAFS) and Energy Dispersive X-Ray Analysis (EDX). The PL peak energy is found to depend linearly on the indium fraction: violet-emitting layers have an indium content of ∼8%, blue layers ∼16% and green layers ∼25%. A linear extrapolation to the limit set by the Stokes' shift prediction, mentioned earlier, yields a limiting indium concentration of only ∼52%. The profound impact of these results on future extensions of nitride technology and current theoretical models of InGaN is briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mukai, T., Yamada, M., and Nakamura, S., Jpn. J. Appl. Phys 38, 3976, (1999).Google Scholar
2. O'Donnell, K. P. et al. , Appl. Phys. Lett. 73, 3273, (1998).Google Scholar
3. Gil, B. and Leroux, M., Properties of InN, in EMIS Datareview 23 (1999).Google Scholar
4. Martin, R.W., Middleton, P.G. and O'Donnell, K.P., Appl. Phys. Lett. 74, 263, (1999).Google Scholar
5. O'Donnell, K. P. et al. , phys. stat. sol (b) 216, 171, (1999).Google Scholar
6. O'Donnell, K. P. et al. , phys. stat. sol (b) 216, 151, (1999).Google Scholar
7. O'Donnell, K. P. et al. , Mat. Sci. Eng. B59, 288, (1999).Google Scholar
8. Stricht, W. Van Der, Ph.D. Thesis, University of Ghent (1999, unpublished).Google Scholar
9. O'Donnell, K. P. et al. , phys. stat. sol (b) 216, 141, (1999).Google Scholar
10. O'Donnell, K. P. et al. , Appl. Phys. Lett. 70, 1843, (1997).Google Scholar
11. Widmann, F. et al. , Phys. Rev. B58, 15989 (1999); B. Danilano et al, Appl. Phys. Lett. 75, 962, (1999).Google Scholar
12. O'Donnell, K. P., Martin, R.W. and Middleton, P.G., Phys. Rev. Lett. 82, 237, (1999).Google Scholar
13. Nakamura, S. and Mukai, T., Jpn. J. Appl. Phys. 31, 1457, (1992).Google Scholar
14. Nakamura, S., J. Vac. Sci. Technol. A 13(3), 705 (1995).Google Scholar
15. Keller, S. et al. , Appl. Phys. Lett. 68, 3147, (1996).Google Scholar
16. Shan, W. et al. , Appl. Phys. Lett. 69, 3315, (1996).Google Scholar
17. Takeuchi, T. et al. , Jpn. J. Appl. Phys. 36, 177, (1997).Google Scholar
18. Collection of early data from Figure 16 of Bedair, S. M., Gallium Nitride I, Semiconductors and Semimetals, 50, 147, (1998).Google Scholar
19. Wagner, J. et al. , MRS Internet J. Nitride Semicond. Res. 4S1, G2.8 (1999).Google Scholar
20. Kwon, Y.-H. et al. , Appl. Phys. Lett. 75, 2545, (1999).Google Scholar