Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T01:00:43.516Z Has data issue: false hasContentIssue false

Optical Spectroscopy of Dry-Etched GaN-Nanostructures

Published online by Cambridge University Press:  15 February 2011

H. Zull
Affiliation:
Technische Physik, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
J. MÜller
Affiliation:
Technische Physik, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
J. Koeth
Affiliation:
Technische Physik, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
F. Kieseling
Affiliation:
Technische Physik, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
A. Forchel
Affiliation:
Technische Physik, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
Get access

Abstract

We have realized GaN wire gratings with periods down to 80 nm and with wire widths down to 26 nm- GaN layers of good structural and optical quality with thicknesses down to 100 nm were grown by electron cyclotron resonance assisted MBE (ECR-MBE). The grating structures were fabricated by high resolution electron beam lithography and electron cyclotron enhanced reactive ion etching (ECR-RIE) using CL2/Ar as etching gas. The optical properties of the GaN structures were investigated by photoluminescence (PL) spectroscopy in the temperature range between 40 K and 110 K. The wire patterns show intense excitonic photoluminescence and only a small dry etched induced degradation of the quantum efficiency even for the narrowest wires.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strite, S., and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992) and references therein.Google Scholar
2. Nakamura, S., Mukai, T., and Senoh, S., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
3. Vaudo, R- P., Goepfert, I.D., Moutsakas, T.D., Beyea, D.M., Frey, T.J., and Meehan, K, J. Appl. Phys. 79, 2779 (1996).Google Scholar
4. Aggarwal, R-L., Maki, P.A., Molnar, R-J., Liau, Z.-L., and Melngailis, I., J. Appl. Phys. 79, 2148 (1996).Google Scholar
5. Chu, T.L., J. Electrochem. Soc. 118, 1200 (1971).Google Scholar
6. Pearton, S.J., Abernathy, C.R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).Google Scholar
7 McLane, G.F., Casas, L., Pearton, S.J., and Abernathy, C.R, Appl. Phys. Lett 66, 3328 (1995).Google Scholar
8. Lee, H., Obermann, D.B., and Harris, J.S. Jr., Appl. Phys. Lett. 67, 2329 (1995).Google Scholar
9. Zhang, L., Ramer, J., Brown, J., Zheng, K, Lester, L.F., and Hersee, S.D., Appl. Phys. Lett. 68, 367 (1996).Google Scholar
10. Shan, W., Schmidt, T.J., Yang, X.H., Hwang, S.J., and Song, J.J., Appl. Phys. Lett. 66, 985 (1995).Google Scholar
11. Monemar, B., Bergmann, J.P., Amano, H., Akasaki, I., Detchprohm, T., Hiramatsu, K., and Sawaki, N., International Symposium on Blue Laser and Light Emitting Diodes, Chiba, Japan (1995)Google Scholar
12. Harris, C.I., Monemar, B., Amano, H., and Akasaki, I., Appl. Phys. Lett. 67, 840 (1995)Google Scholar
13. Shan, W., Schmidt, T.J., Yang, X.H., Hwang, S.J., and Song, J.J., Appl. Phys. Lett. 66, 985 (1995)Google Scholar
14. Dingle, R., Sell, D.D., Stokowski, S.E., and ilegemns, M., Phys. Rev. B 4, 1211, (1971)Google Scholar
15. Monemar, B., Phys. Rev B 10, 676 (1974)Google Scholar