Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-06T14:12:16.609Z Has data issue: false hasContentIssue false

Optimization of the Ion-Cut Process in Si and SiC

Published online by Cambridge University Press:  17 March 2011

O. W. Holland
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6048
D. K. Thomas
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6048
R. B. Gregory
Affiliation:
Motorola Inc., Tempe, AZ 85284
Get access

Abstract

H+-implantation is the basis for an ion-cut process, which combines hydrophilic wafer bonding, to produce heterostructures over a wide range of materials. This process has been successfully applied in Si to produce a commercial silicon-on-insulator material. The efficacy of implantation to produce thin-film separation was studied by investigation of H+-induced exfoliation in Si and SiC. Experiments were done to isolate the effects of the hydrogen chemistry from that of implant damage. Damage is manipulated independently of H+ dosage by a variety of techniques ranging from elevated temperature irradiation to a two-step implantation scheme in Si, and the use of channeled-ion implantation in SiC. The results will demonstrate that such schemes can significantly reduce the critical dose for exfoliation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tong, Q.-Y. and Gössele, U., Semiconductor Wafer Bonding: Science and Technology, John Wiley & Sons, Inc., New York, 1999.Google Scholar
2. Bruel, M., “Process for the production of thin semiconductor material films,” US patent 5,374,564 (1994).Google Scholar
3. Bruel, M., Electron. Lett. 31, 1201 (1995).Google Scholar
4. Cerofoline, G. F., Balboni, R., Bisero, D., Corni, F., Frabboni, S., Ottaviani, G., Tonini, R., Brusa, R. S., Zecca, A., Ceschini, M., Giebel, G., and Pavesi, L., Phys. Stat. Sol. (a) 150, 539 (1995).Google Scholar
5. Heyman, J. N., Ager, J. W. III, Haller, E. E., Johnson, N. M., Walker, J., and Doland, C. M., Phys. Rev. B 45, 13363 (1992).Google Scholar
6. Huang, L.-J., Tong, Q.-Y., Chao, Y.-L., Lee, T.-H., Martini, T., and Gössele, U., Appl. Phys. Lett. 74, 982 (1999).Google Scholar
7. Keinonen, J., Hautala, M., Rauhala, E., Karttunen, V., Kuronen, A., Räisänen, J., Lahtinen, J., Vehanen, A., Punkka, E., and Hautojärvi, P., Phys. Rev. B 37, 8269 (1988).Google Scholar
8. Bisero, B., Corni, F., Frabboni, S., Tonini, R., and Ottaviani, G., J. Appl. Phys. 83, 4106 (1998).Google Scholar
9. Weldon, M. K., Collot, M., Chabal, J., Venezia, V. C., Agarwal, A., Haynes, T. E., Eaglesham, D. J., Christman, S. B., and Chaban, E. E., Appl. Phys. Lett. 73, 3721 (1998).Google Scholar
10. Gregory, R. B., Wetteroth, T. A., Wilson, S. R., Holland, O. W., and Thomas, D. K., Appl. Phys. Lett. 75, 2623 (1999).Google Scholar
11. Linnarsson, M. K., Janson, M., Schöner, A., Nordell, N., Karlsson, S., and Svensson, B. G., Mater. Sci. Forum 264–268, 761 (1998).Google Scholar
12.Unpublished results.Google Scholar
13.See for example, James, Wei-Kan Chu Mayer, W., and Nicolet, Marc-A., Backscattering Spectrometry, Academic Press, New York, (1978) p. 223.Google Scholar
13. Gregory, R. B., Holland, O. W., Thomas, D. K., Wetteroth, T. A., and Wilson, S. R., Mat. Res. Soc. Symp. Proc. 572, 33 (1999).Google Scholar