Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T01:10:18.847Z Has data issue: false hasContentIssue false

Orientation Dependent Epitaxial Growth of CeO2 Layers on Si Substrates

Published online by Cambridge University Press:  21 February 2011

T. Inoue
Affiliation:
Department of Electronic Engineering, Iwaki Meisei University, 5–5–1 lino-Chuoudai, Iwaki, Fukushima 970, Japan
T. Ohsuna
Affiliation:
Department of Electronic Engineering, Iwaki Meisei University, 5–5–1 lino-Chuoudai, Iwaki, Fukushima 970, Japan
Y. Yamamoto
Affiliation:
Research Center of Ion Beam Technology, Hosei University, 3–7–2 Kajino-cho, Koganei, Tokyo 184, Japan
Y. Sakurai
Affiliation:
Research Center of Ion Beam Technology, Hosei University, 3–7–2 Kajino-cho, Koganei, Tokyo 184, Japan
L. Luo
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
X. D. Wu
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
C. J. Maggiore
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

Cerium dioxide (CeO2) layers epitaxially grown on (100), (111) and (110) silicon substrates by electron beam evaporation in an ultra-high vacuum were investigated. CeO2 layers on Si (111) substrates were proved to be epitaxially grown at the substrate temperature above 200°C, and had considerably good crystalline quality. On the other hand, CeO2 layers grown on Si (100) at 800°C consisted of more than 98% volume fraction of (110) component. Cross-sectional high resolution transmission electron microscopy and selected area electron diffraction verified clearly the above crystallography orientation and that the <100> direction in the CeO2(110) plane was parallel with the <110> direction in the Si (100) plane. The cross-sectional lattice image confirmed the existence of ∼ 6 nm-thick intermediate amorphous layer between the CeO2 layer and the Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luo, L., Wu, X. D., Dye, R. C., Muenchausen, R. E., Folton, S. R., Coulter, Y., Maggiore, C. J., and Inoue, T., Appl. Phys. Lett. 59, 2043 (1991).Google Scholar
2. Inoue, T., Yamamoto, Y., Koyama, S., Suzuki, S., and Ueda, Y., Appl. Phys. Lett. 56, 1332 (1990).Google Scholar
3. Inoue, T., Ohsuna, T., Luo, L., Wu, X. D., Maggiore, C. J., Yamamoto, Y., Sakurai, Y. and Chang, J. H., Appl. Phys. Lett, to be published in Dec. 30 1991 issue.Google Scholar
4. Yoshimoto, M., Nagata, H., Tsukahara, T., and Koinuma, H., Jpn. J. Appl. Phys. 29, L1199 (1990).Google Scholar
5. Inoue, T., Osonoe, M., Tohda, H., Hiramatsu, M., Yamamoto, Y., Yamanaka, A., and Nakayama, T., J. Appl. Phys. 69, 8313 (1991).Google Scholar
6. Nagata, H., Tsukahara, T., Gonda, S., Yoshimoto, M., and Koinuma, H., Jpn. J. Appl. Phys. 30, L1136 (1991).Google Scholar
7. Harada, K., Nakanishi, H., Itozaki, H., and Yazu, S., Jpn. J. Appl. Phys. 30, 934 (1991).CrossRefGoogle Scholar
8. Asano, T. and Ishiwara, H., J. Appl. Phys. 55, 3566 (1984).Google Scholar
9. hsaka, Y., Imura, T., Nishibayashi, Y., and Nishiyama, F., J. Appl. Phys. 63, 581 (1988).Google Scholar
10. Fenner, D. B., Viano, A. M., Fork, D. K., Connell, G. A. N., Boyce, J. B., Ponce, F. A., and Tramontana, J. C., J. Appl. Phys. 69, 2176 (1991).Google Scholar
11. Fork, D. K., Ponce, F. A., Tramontana, J. C, and Geballe, T. H., Appl. Phys. Lett. 58, 2294 (1991).Google Scholar