Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-29T08:31:28.750Z Has data issue: false hasContentIssue false

Orientational Order Phase Transition in Solid C60

Published online by Cambridge University Press:  10 February 2011

J. R. Soto
Affiliation:
Depto. de Física, Facultad de Ciencias, UNAM, Apdo. Post. 70-646, 04510 México D. F.
R. M. Valladares
Affiliation:
Depto. de Física, Facultad de Ciencias, UNAM, Apdo. Post. 70-646, 04510 México D. F.
A. Calles
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carret. México-Toluca, km 36.5, Edo. de Méx., México.
Get access

Abstract

The phonon spectrum and thermal parameters such as specific heat, effective temperature and amplitude of vibration of solid C60 are studied from ab-initio calculations. The relative orientations between the C60 balls are taken into account in a sc phase below 261.4K. The same properties are studied above the transition temperature (261.4K) where the balls are randomly oriented in a fcc structure. A difference is found in some of the thermal parameters due to the relative inter-molecular orientation. In particular, the low energy vibrational spectrum (which is separated by a ∼20meV gap from the intra-molecular spectrum) is changed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grivei, E., Cassart, M., Issi, J. P., Langer, L., Nysten, B., Michenaud, J. P., Fabre, C., and Rassat, A., Phys. Rev. B 48, 8514 (1993).Google Scholar
2. Olson, J. R., Topp, K. A., and Pohl, R. O., Science 259, 1145 (1993).Google Scholar
3. Yu, J., Bi, L., Kalia, R. K., and Vashishta, P., Phys. Rev. B bf 49, 5008 (1994).Google Scholar
4. Lu, J., Li, X., and Martin, R. M., Phys. Rev. Lett. 68, 1551 (1992).Google Scholar
5. Sprik, M., Cheng, A., and Klein, M. L., J. Phys. Chem. 96, 2027 (1992).Google Scholar
6. Quong, A. A., Pederson, M. R., and Feldman, J. L., Solid State Comm. 87, 535 (1993).Google Scholar
7. Heiney, P. A., Fisher, J. E., McGhie, A. R., Romanow, W. J., Denenstein, A. M., McCauley, J. P. Jr., Smith, A. B. III, and Cox, D. E., Phys. Rev. Lett. 66, 2911 (1991).Google Scholar
8. Pitschovius, L., Renker, B., Gompf, F., Heid, R., Chaplov, S. L., Haluska, M., and Kuzmany, H., Phys. Rev. Lett. 69, 266 (1992).Google Scholar
9. Beyermann, W. P., Hundley, M. F., Thompson, J. D., Diedrich, F. M., and Gruner, G., Phys. Rev. Lett 68, 2046 (1992).Google Scholar
10. Zubov, V. I., Tetriakov, N. P., Sanchez, J. F., and Caparica, A. A., Phys Rev B 53, 12080 (1996).Google Scholar