Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T23:05:22.870Z Has data issue: false hasContentIssue false

Oxygen Adsorption on and Oxidation of NiAl Surfaces

Published online by Cambridge University Press:  25 February 2011

D. M. Zehner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
G. R. Gruzalskia
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Oxygen adsorption on and the eventual oxidation of the (100), (110), and (111) surfaces of NiAl was studied extensively using a variety of surface sensitive techniques. While the initial rate of uptake at 22°C varied significantly with orientation and surface composition, in all cases it was possible to form an overlayer region containing the equivalent of several monolayers of oxygen. No ordered overlayers were observed. Information about the chemical bonding was obtained from changes in core-level binding energies. Examination of the Al 2p region showed evidence for two different oxide environments, depending on surface treatment. Comparison of these results with those for both Ni and Al clearly shows effects due to alloying.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bonzel, H. P., J. Vac. Sci. Technol. A 2, 866 (1984).Google Scholar
2. Silverman, E. M., Madix, R. J., and –Telrue, P., Surf. Sci. 109, 127 (1981).Google Scholar
3. Davis, H. L. and Noonan, J. R., Phys. Rev. Lett. 54, 566 (1985).Google Scholar
4. Yalisove, S. M. and Graham, W. R., Surf. Sci. 183 556 (1987).Google Scholar
5. Davis, H. L. and Noonan, J. R., this volume.Google Scholar
6. Davis, H. L. and Noonan, J. R., private communication.Google Scholar
7. Powell, C. J., Erikson, N. E., and Jach, T., J. Vac. Sci. Technol. 20, 625 (1982).Google Scholar
8. Norton, P. R., Tapping, R. L., and Goodale, J. W., Surf. Sci. 65, 13 (1977).CrossRefGoogle Scholar
9. Gaylord, R., Ph. D. Thesis, University of Pennyslvania, 1987.Google Scholar
10. Krishnan, N. G., Delgass, W. N., and Robertson, W. D., Surf. Sci. 57, 1 (1976).Google Scholar
11. Zuhr, R. A., private communication.Google Scholar
12. Holloway, P. H., J. Vac. Sci. Technol. 18, 653 (1981).Google Scholar
13. Martinson, C. W. B. and Flodstrdmöm, S. A. Surf. Sci. 80, 306 (1979).Google Scholar
14. Evans, S., Pielazek, J., and Thomas, J. M., Surf. Sci. 736, 644 (1976).Google Scholar
15. Barrier, A., Chem. Phys. Lett. 19, 109 (1977).Google Scholar
16. Mundenar, J. M., Plummer, E. W., and Zehner, D. M., unpublished results.Google Scholar
17. Lui, S. C., Plummer, E. W., and Zehner, D. M., p. 191 in National Synchrotron Light Source Annual Report 1986 (BNL 52045), Brookhaven National Laboratory, Upton, New York, October 1986.Google Scholar
18. Zehner, D. M., Harris, L. A., Ownby, G. W., and Gruzalski, G. R., unpublished results.Google Scholar