Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T19:33:32.933Z Has data issue: false hasContentIssue false

Performances of Nano/Amorphous Silicon Films Produced by Hot Wire Plasma Assisted Technique

Published online by Cambridge University Press:  10 February 2011

I. Ferreira
Affiliation:
CENIMAT, Faculty of Science and Technology, New University of Lisbon and CEMOP/UNINOVA, Quinta da Torre, 2825 Monte de Caparica, Portugal, rm@uninova.pt
H. Águas
Affiliation:
CENIMAT, Faculty of Science and Technology, New University of Lisbon and CEMOP/UNINOVA, Quinta da Torre, 2825 Monte de Caparica, Portugal, rm@uninova.pt
L. Mendes
Affiliation:
CENIMAT, Faculty of Science and Technology, New University of Lisbon and CEMOP/UNINOVA, Quinta da Torre, 2825 Monte de Caparica, Portugal, rm@uninova.pt
F. Fernandes
Affiliation:
CENIMAT, Faculty of Science and Technology, New University of Lisbon and CEMOP/UNINOVA, Quinta da Torre, 2825 Monte de Caparica, Portugal, rm@uninova.pt
E. Fortunato
Affiliation:
CENIMAT, Faculty of Science and Technology, New University of Lisbon and CEMOP/UNINOVA, Quinta da Torre, 2825 Monte de Caparica, Portugal, rm@uninova.pt
R. Martins
Affiliation:
CENIMAT, Faculty of Science and Technology, New University of Lisbon and CEMOP/UNINOVA, Quinta da Torre, 2825 Monte de Caparica, Portugal, rm@uninova.pt
Get access

Abstract

This work reports on the performances of undoped and n doped amorphous/nano-crystalline silicon films grown by hot wire plasma assisted technique. The film's structure (including the presence of several nanoparticles with sizes ranging from 5 nm to 50 nm), the composition (oxygen and hydrogen content) and the transport properties are highly dependent on the filament temperature and on the hydrogen dilution. The undoped films grown under low r.f. power (≍ 4 mWcm−2) and with filament temperatures around 1850 °K have dark conductivities below 10−1Scm−1, optical gaps of about 1.5 eV and photo-sensitivities above 105, (under AM3.5), with almost no traces of oxygen content. N- doped silicon films were also fabricated under the same conditions which attained conductivities of about 10−2Scm−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Staebler, D.L., in Amorphous and Microcrystalline Silicon Technology, edited by Wagner, S., Hack, M., Schiff, E.A., Schropp, R. and Shimizu, I. (Mater. Res. Soc. Symp. Proc., 467 (1997), p. 35.Google Scholar
2 Wronski, C.R., in Amorphous and Microcrystalline Silicon Technology, edited by Wagner, S., Hack, M., Schiff, E.A., Schropp, R. and Shimizu, I. (Mater. Res. Soc. Symp. Proc., 467 (1997), p. 717.Google Scholar
3 Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J., Lloret, A., Appl. Phys. A, 59 p. 645 (1994).Google Scholar
4 Middya, A.R., Lloret, A., Perrin, J., Huc, J., Moncel, J.L., Parey, J.Y., Rose, G., Mater. Res. Soc. Symp. Proc., 377 (1995) p. 119.Google Scholar
5 Matsumura, H., Jpn. J. Appl. Phys. 25, L 949 (1986).Google Scholar
6 Maçarico, A., Vieira, M., Fantoni, A., Louro, P., Sêco, A., Martins, R., Hollenstein, C.. J. Non-Cryst. Solids, 198–200, p. 1207 (1996).Google Scholar
7 Lucovsky, G., Jing, J., Whitten, J.L., J. Non-Cryst. Solids, 137–138, p. 119 (1991).Google Scholar
8 Carius, R., in Amorphous and Microcrystalline Silicon Technology, edited by Wagner, S., Hack, M., Schiff, E.A., Schropp, R. and Shimizu, I. (Mater. Res. Soc. Symp. Proc., 467 (1997), p. 283294.Google Scholar
9 Wanka, H.N., Zedlitz, R., Heintze, M., Schubert, M.B., in Proc. of 13th European Photovoltaic Solar Energy Conference, Nice, France (1995) pp. 17531756 Google Scholar
10 Martins, R., Vieira, M., Ferreira, I., Fortunato, E., Guimarãdes, L., Solar En. Mat. Solar Cells, 41–42, p. 493 (1996).Google Scholar