No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Titanium aluminide alloys based on the intermetallic γ (TiAl) and α2 (Ti3Al) phases are being considered as light-weight materials for high-temperature applications in advanced energy conversion systems. However, for such applications the material suffers from insufficient creep resistance at the intended service temperature of 700°C. The paper reports an electron microscope study of diffusion controlled mechanisms which apparently cause the degradation of the strength properties. The processes lead to significant structural changes involving the formation of extended ledges and recrystallization. The driving forces of these mechanisms probably arise from non-equilibrium phase compositions and significant coherency stresses occurring at the interfaces.