Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T20:31:37.486Z Has data issue: false hasContentIssue false

Phase Segregation and Thermoelectric Properties of AgPbmSbTem+2m=2,4,6, and 8

Published online by Cambridge University Press:  01 February 2011

Joseph Sootsman
Affiliation:
sootsma3@msu.edu, Michigan State University, Chemistry, Department of Chemistry, Michigan State University, East Lansing, MI, 48824, United States
Robert Pcionek
Affiliation:
pcionekr@msu.edu
Huijun Kong
Affiliation:
huijunk@umich.edu
Ctirad Uher
Affiliation:
cuher@umich.edu
Mercouri G Kanatzidis
Affiliation:
kanatzidis@chemistry.msu.edu, Michigan State University, Chemistry, United States
Get access

Abstract

The preparation and characterization of the AgPbmSbTem+2 family of compounds with m=2, 4, 6, and 8 is reported. Phase segregation was observed in all of these materials. The lattice thermal conductivity of these samples is low (<1.1 W/m-K). Powder x-ray diffraction, thermal analysis, and electron microscope investigations of these systems show that ideal solid solutions are not formed. The transport properties of these composite materials are presented and suggest that they could have promising thermoelectric properties when optimized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harman, T.C.; Walsh, M.P.; Laforge, B.E.; Turner, G.W Elect. Mater. 2005. 34, L19.Google Scholar
2. Rowe, D.M., CRC Handbook of Thermoelectrics, (CRC Press, Florida, 1995)Google Scholar
3. Dresselhaus, M.S.; Dresselhaus, G.; Sun, X.; Zhang, Z.; Cronin, S.B.; Koga, T. Phys. Solid State, 1999, 41 679.Google Scholar
4. Humphrey, T.E.; Linke, H. Phys. Rev. Lett. 2005, 94, 096601.Google Scholar
5. Hsu, K-F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J.S; Uher, C.; Hogan, T.; Polychroniadis, E.K.; Kanatzidis, M.G. Science 2004, 303, 818821.Google Scholar
6. Quarez, E.; Hsu, K-F.; Pcionek, R.; Frangis, N.; Ploychroniadis, E.K.; Kanatzidis, M.G J. Am. Chem. Soc. 2005, 127, 91779190.Google Scholar
7. Bilc, D.; Mahanti, S.D.; Quarez, E.; Hsu, K-F.; Pcionek, R.; Kanatzidis, M.G Phys. Rev. Lett. 2004, 93, 146403.Google Scholar
8. Maier, R.G Z. Metallkde. 1963, 54, 311.Google Scholar
9. Fleischmann, H.; Rupprecht, J.; Luy, H. Z. Naturforsch. A 1963, 18, 646.Google Scholar
10. Chen, N.; Gascoin, F.; Snyder, J.; Mueller, E.; Karpinski, G.; Stiewe, C. Appl. Phys. Lett. 2005, 87, 171903.Google Scholar
11. Ono, T.; Takahama, T.; Irie, T. J. Phys. Soc. Japan. 1962, 17, 1070.Google Scholar
12. Hsu, K-F.; Loo, S.; Chen, W.; Uher, C.; Hogan, T.; Kanatzidis, M.G.; Mat. Res. Soc. Proc., 2004, 793 S6.3.1.Google Scholar
13. Kittel, C. Introduction to Solid State Physics, 8th ed. (Wiley, New Jersey, 2005) p. 123.Google Scholar