Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T07:48:41.515Z Has data issue: false hasContentIssue false

Photocatalytic TiO2 Macroscopic Fiber Obtained through Integrative Chemistry

Published online by Cambridge University Press:  01 February 2013

Natacha Kinadjian
Affiliation:
Université de Bordeaux, Centre de Recherche Paul Pascal, office 115, UPR 8641-CNRS, 115 Avenue Albert Schweitzer, 33600 Pessac, France Chemistry, ChemEng & Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo (ON) N2L 3G1, Canada
Mickael Le Bechec
Affiliation:
IPREM- Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, Université de Pau et des Pays de l’Adour, Hélioparc-2 Av. du Président Angot, F-64053 Pau Cedex 09, France
Thierry Pigot
Affiliation:
IPREM- Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, Université de Pau et des Pays de l’Adour, Hélioparc-2 Av. du Président Angot, F-64053 Pau Cedex 09, France
Fabien Dufour
Affiliation:
Chimie de la Matière Condensée-UMR 7574 CNRS-Université Pierre et Marie CURIE, Collège de France, Bâtiment C, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
Olivier Durupthy
Affiliation:
Chimie de la Matière Condensée-UMR 7574 CNRS-Université Pierre et Marie CURIE, Collège de France, Bâtiment C, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
Ahmed Bentaleb
Affiliation:
Université de Bordeaux, Centre de Recherche Paul Pascal, office 115, UPR 8641-CNRS, 115 Avenue Albert Schweitzer, 33600 Pessac, France
Eric Prouzet
Affiliation:
Chemistry, ChemEng & Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo (ON) N2L 3G1, Canada
Sylvie Lacombe
Affiliation:
IPREM- Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux, Université de Pau et des Pays de l’Adour, Hélioparc-2 Av. du Président Angot, F-64053 Pau Cedex 09, France
Rénal Backov
Affiliation:
Université de Bordeaux, Centre de Recherche Paul Pascal, office 115, UPR 8641-CNRS, 115 Avenue Albert Schweitzer, 33600 Pessac, France
Get access

Abstract

Photocatalytic properties of titanium oxide depend on the material size and shape, which can favour a higher interaction between reactants and catalyst. Most of the studies reported until now, show that reducing size down to the nanoscale increases the photocatalytic efficiency. We demonstrate that a multiscale shape design, integrating surface roughness, particle shape, and material 1D processing and orientation, can favour photocatalytic properties in the solid-gas regime, especially mineralization (conversion into CO2), when the material hierarchical 1D orientation is combined with unidirectional gas flow. Several materials with hierarchical structure were prepared and characterized. They have been tested for the photocatalytic mineralization of gaseous acetone, and compared with commercial catalysts. Our study reveals that a suitable combination of multiscale design can favour high mineralization.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W., Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K., Adv. Mater. 11, 1307 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
On, D. T., Langmuir 15, 8561 (1999).CrossRefGoogle Scholar
a) Madhugiri, S., Sun, B., Smirnitotis, P. G., Ferraris, J. P., Microporous Mesoporous Mater. 69, 77 (2004) ; b) D. Li, Y. N. Xia, Nano. Lett. 3, 555 (2003).CrossRefGoogle Scholar
Liu, Y., Sun, D. D., Leckie, J. O., Nano. Lett. 7, 1081 (2007).CrossRefGoogle Scholar
Caruso, R. A., Schattka, J. H., Grenier, A., Adv. Mater. 13, 1577 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
a) Backov, R. Soft Matter 2, 452 (2006); b) E. Prouzet, Z. Khani, M. Bertrand, M.Tokumoto, V. Gyuot-Ferreol, J. F. Tranchant, Micro. Meso. Mater. 96, 369 (2006).CrossRefGoogle Scholar
Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., et al. ., Science 290, 1331 (2000).CrossRefGoogle Scholar
Biette, L., Carn, F., Maugey, M., Achard, M.-F., et al. ., Adv. Mater. 17, 2970 (2005).CrossRefGoogle Scholar
Sugimoto, T., Zhou, X., Muramatsu, A., J. Coll. Inter. Sci. 259, 53 (2003).CrossRefGoogle Scholar
a) Avnir, D., Jaroniec, M., Langmuir 5, 1431 (1985) ; b) E. Prouzet, C. Boissière, S. S. Kim, T. J. Pinnavaia, Microporous and Mesoporous Materials 119, 9 (2009).CrossRefGoogle Scholar
Sakurada, I. in Polyvinyl Alcohol Fibres (Eds.: Dekker, M.), International Fiber Science and Technology, New York, vol. 6., (1985).Google Scholar
Peral, J., Ollis, D., J. Catal 136, 554 (1992).CrossRefGoogle Scholar
Besov, A. S. Vorontsov, A. V., Catal. Com. 9, 2598 (2008).CrossRefGoogle Scholar